
www.manaraa.com

Atomic Broadcast: From Simple Message Di�usion toByzantine AgreementFlaviu Cristian, Houtan Aghili, Ray Strong, Danny DolevIBM Alamaden Research Center�San Jose, CA 95120-6099March 29, 1994AbstractIn distributed systems subject to random communication delays and componentfailures, atomic broadcast can be used to implement the abstraction of synchronousreplicated storage, a distributed storage that displays the same contents at every correctprocessor as of any clock time. This paper presents a systematic derivation of a familyof atomic broadcast protocols that are tolerant of increasingly general failure classes:omission failures, timing failures, and authentication-detectable Byzantine failures. Theprotocols work for arbitrary point-to-point network topologies, and can tolerate anynumber of link and process failures up to network partitioning. After proving theircorrectness, we also prove two lower bounds that show that the protocols provide inmany cases the best possible termination times.Keywords and phrases: Atomic Broadcast, Byzantine Agreement, Computer Network,Correctnesss, Distributed System, Failure Classi�cation, Fault-Tolerance, Lower Bound,Real-Time System, Reliability, Replicated Data.
�Flaviu Cristian is now with the University of California, San Diego, Houtan Aghili is with the IBM TJWatson Research Center and Danny Dolev is with the Hebrew University1



www.manaraa.com

1 IntroductionRandom communication delays and failures prevent distributed processes from having theknowledge of global system states that shared storage provides to the processes of a cen-tralized system. The absence of such knwledge is one of the main reasons why distributedprogramming is so di�cult. The objective of this paper is to discuss broadcast protocolsthat enable the correct processes of a distributed system to attain consistent (albeit slightlydelayed) knowledge of the system state, despite failures and random communication delays.Programming distributed processes that share such consistent views of the system statethen becomes similar to programming the processes of a centralized system.The idea is to synchronize processor clocks, replicate global system state information atseveral physical processors, and use atomic broadcast for disseminating global state updatesto these processors, so that all correct processors have identical views of the global stateat identical clock times. An atomic broadcast protocol is a protocol which, for some timeconstant � called the broadcast termination time, possesses the following properties: (1)atomicity: if any correct processor delivers an update at time U on its clock, then thatupdate was initiated by some processor and is delivered by each correct processor at timeU on its clock, (2) order: all updates delivered by correct processors are delivered in thesame order by each correct processor, and (3) termination: every update whose broadcastis initiated by a correct processor at time T on its clock is delivered at all correct processorsat time T + � on their clocks.Because of its properties, atomic broadcast can be used to implement the abstraction ofsynchronous replicated storage: a distributed, resilient storage that displays, at any clocktime, the same contents at every correct physical processor and that requires � time unitsto complete replicated updates. Indeed, if all updates to synchronous replicated storage arebroadcast atomically, the atomicity property ensures that every update is either applied atall correct processors or by none of them and the order property ensures that all updatesare applied in the same order at all correct processors. Therefore, if the replicas are initiallyconsistent, they will stay consistent. The termination property ensures that every updatebroadcast by a correctly functioning processor is applied to all correct replicas � clock timeunits later. If the synchronous replicated storage is used to record global state information,this means that processes running at each correct physical processor can perceive, at anytime, the global system state that existed � clock time units earlier. Such a storage istherefore very similar to a shared storage, except that it does not represent a single pointof failure.The use of synchronous replicated storage can simplify the programming of distributedprocesses since it relieves a programmer from the burden of coping with the inconsistencyamong local knowledge states that can result from random communication delays or faultyprocessors and links. It is relatively straightforward to adapt known concurrent program-ming paradigms for shared storage environments to distributed environments that provide2



www.manaraa.com

the abstraction of a synchronous replicated storage. Several examples of such adaptationsare given in [L]. Within the Highly Available System project1 at the Almaden Research Cen-ter, atomic broadcast was designed for updating replicated system directories and reachingagreement on the failure and recovery of system components [Cr], [GS]. In the HAS systemprototype, membership information and service directories are maintained as synchronousreplicated storage.Much of the previous work on atomic broadcast has been performed within the ByzantineGenerals framework [LSP] (see [F],[SD] for surveys of this work). Typical models withinthis framework have assumed guaranteed communication in a completely connected net-work of perfectly synchronized processors. They assume that communication takes placein synchronous rounds of information exchange, where a round was de�ned as the timeinterval needed by an arbitrary processor to receive and process all messages sent by allprocessors in a previous round. In contrast to these perfectly synchronized rounds models,this paper considers networks of arbitrary topology subject to link as well as processor fail-ures. Immediate response to a message is allowed rather than forcing a processor to waitfor the end of a round. Clocks are assumed to be only approximately synchronized and weconsider a variety of component failure behaviors that are likely to occur in practice andcan be tolerated at a cost less than that required to tolerate the worst case (Byzantine)failures.We classify failures observable in distributed systems into several nested classes, so thatthe complexity of a fault-tolerant protocol increases with the size of the class of failures ittolerates. We derive a new family of atomic broadcast protocols ranging from a fairly simpleprotocol that tolerates omission failures to a rather sophisticated protocol that toleratesauthentication-detectable Byzantine failures, we prove the correctness of each protocol inthe family, and we discuss their performance. We also prove two lower bounds on thetermination times of atomic broadcast protocols tolerant of omission and authentication-detectable Byzantine failures. One objective in writing the paper was to structure it so asto allow a reader who is not interested in the technicalities inherent in correctness and lowerbound proofs to achieve a reasonable understanding of our protocols without reading theproofs in Sections 5.1, 6.1, 7.1, and 9.2 Failure Classi�cationWe classify failures with respect to a decomposition of a distributed system into processorsand communications links. These components are speci�ed to produce output in responseto the occurrence of certain speci�ed input events, such as service request arrivals or the11981-1985 3



www.manaraa.com

passage of time. For example, a link connecting processor s to processor r is speci�ed todeliver a message to r within a certain number of time units whenever s so requests, and aprocessor p equipped with a timer can be speci�ed to output messages on all its adjacentlinks every n time units. A component speci�cation prescribes what output should beproduced in response to any sequence of input events as well as the real-time intervalwithin which this output should occur (for a more formal de�nition, see Section 9).A system component is correct if, its response to inputs is consistent with its speci�cation.A component failure occurs when a component does not behave in the manner speci�ed.An omission failure occurs when, in response to a sequence of inputs, a component nevergives the speci�ed output. A timing failure occurs when the component gives the speci�edoutput too early, too late, or never. A Byzantine failure [LSP] occurs when the componentdoes not behave in the manner speci�ed: either no output occurs, or the output is outsidethe real-time interval speci�ed, or some output di�erent from the one speci�ed occurs.An important subclass of Byzantine failures are those for which any resulting corruptionof messages relayed by components such as processors and links is detectable by using amessage authentication protocol. We call failures in this class authentication-detectableByzantine failures (cf. [LSP]). Error detecting codes [PW] and public-key cryptosystemsbased on digital signatures [RSA] are two examples of authentication techniques whichcan ensure that both unintentional and intentional message corruptions are detected withvery high probability. For the rest of the paper we will assume the existence of a �xedauthentication protocol (it will be further described below). The class of authentication-detectable failures is de�ned with respect to this protocol.A processor crash, a link breakdown, a processor that occasionally does not forward amessage that it should, and a link that occasionally loses messages, are examples of omis-sion failures. An excessive message transmission or processing delay due to a processoror network overload is an example of a late (or performance) timing failure. When somecoordinated action is taken by a processor too soon (perhaps because of a timer that runstoo fast), we talk of an early timing failure. A message alteration by a processor or alink (because of a random fault) is an example of a Byzantine failure. If the authenti-cation protocol employed enables the receiver of the message to detect the alteration wehave an authentication-detectable Byzantine failure. If the message alteration is so inge-nious that the authentication protocol fails to detect the forgery, we have an example of anon-authentication-detectable Byzantine failure.Crash failures are a proper subclass of omission failures (a crash failure occurs when aftera �rst omission to give output a component systematically omits to respond to all subse-quent input events), omission failures are a proper subclass of timing failures (a componentwhich su�ers an omission failure can be understood as having an in�nite response time),timing failures are a proper subclass of authentication-detectable Byzantine failures (nomessages that are output are corrupted), and authentication-detectable Byzantine failuresare a proper subclass of the class of all possible failures, the Byzantine failures. The nested4



www.manaraa.com

nature of the failure classes de�ned above makes it easy to compare \the power" of fault-tolerant protocols. If A and B are two protocols that implement the same service (e.g.atomic broadcast or clock synchronization) and A tolerates only a proper subclass A' of theclass of failures B' that B tolerates, A is less fault-tolerant than B. Our failure classi�cationwas chosen so that the complexity of B is greater than that of A whenever the class of fail-ures A' tolerated by A is a proper subclass of the class of failures B' tolerated by B. Thus,the larger the class of failures that a protocol tolerates, the more expensive the protocol is.Observe that a failure cannot be classi�ed without reference to a component speci�cation.In particular, if one component is made up of others, then a failure of one type in one of itsconstituent components can lead to a failure of another type in the containing component.For example, a clock that displays the same \time" is an example of a crash failure. If thatclock is part of a processor that is speci�ed to associate di�erent timestamps with di�erentsynchronous replicated storage updates, then the processor may be classed as experiencinga Byzantine failure. In our decomposition of a distributed system into processors andlinks, neither type of component is considered part of the other. Also, when consideringoutput behavior, we do not decompose messages, so a message is either correct or incorrect,as a whole. With these conventions we can classify failures unambiguously. We are notconcerned with tolerating or handling the failures experienced by such sub-components asclocks directly. We discuss fault tolerance in terms of the survival and correct functioning ofprocessors that meet their speci�cations in an environment in which some other processorsand some links may not meet theirs (usually because they contain faulty sub-components).Thus when we speak of tolerating omission failures, we mean tolerating omission failureson the part of other processors or links, not tolerating omission failures on the part of sub-components like timers or clocks that might cause much worse behavior on the part of theircontaining processors.3 AssumptionsWe consider a system of processes that maintain synchronous replicated storage. Processesdisseminate updates to storage replicas by using the atomic broadcast service implementedby n distributed processors. Some pairs of processors can communicate through point-to-point links. We do not assume that links exist between all pairs of processors. Weuse the symbol G to represent the communications network of processors and links. Welet n be the number of processors and m be the number of links in G. We call neighborsthose processors that share a link. A synchronous replicated storage manager can ask aprocessor to atomically broadcast an update � by invoking a broadcast(�) command. Tosend a message m containing the update on an adjacent link l, a processor p invokes asend(m) on l command. The link is assumed to contain any bu�ers and queueing involvedin message transmission and receipt. To receive a message containing some update from alink, a processor must invoke a receive(m) from i command. The output parameters of this5



www.manaraa.com

command are the message m received as well as the identity i of the link on which m wasreceived. Updates received in such messages are delivered to the higher level synchronousstorage managers.We make the following assumptions.1. All processor names in G are distinct and there is a total order on processornames.2. Let F be a set of processors and links that experience failures during an executionof an atomic broadcast protocol, and let G-F be the surviving network consistingof the remaining correct processors from G and the remaining correct links thatconnect them to each other. We assume that G-F is connected. (When thesurviving network is partitioned into disconnected subnetworks, our protocolscan no longer guarantee atomicity. An alternative view is that our protocolswork on the connected components of the network.)3. Each processor has access to a clock. We denote by Cp the clock of processorp and use Cp(t) to denote p's local clock time at real time t. In writing timevalues, we adopt the convention of using capital letters for writing clock times andlower case letters for real times. We assume that the clocks of correct processorsare monotone increasing functions of real time and the resolution of processorclocks is �ne enough, so that separate clock readings yield di�erent values (thiswill ensure that no correct processor issues the same timestamp twice). Forsimplicity, we assume that the lifetime of the system is bounded so that clocksdon't wrap around; however, this assumption is not necessary. As an alternativewe could have de�ned an ordering on the timestamps issued by cyclic clocksthat would be su�cient to prove the correctness of our algorithms under theassumption that faulty processors do not live longer than half the wrap aroundtime (this is the way the order relation on timestamps is implemented in thesystem prototype described in [GS]). We also assume that the clocks of correctprocessors are approximately synchronized: for any correct processors p and q,and for any real time t, clocks are within a maximum deviation �jCp(t)� Cq(t)j < �and are within a linear enveloppe of real time. (Di�usion based clock synchroniza-tion protocols tolerant of omission, performance, and authentication-detectableByzantine failures that satisfy these requirements are presented in [CAS,DHSS];for a survey see [Sc].)4. Processors run under the control of a real time operating system which providesmulti-tasking. To schedule a task A with input parameters B at local time T, theoperating system provides a \schedule A(B) at T" command. An invocation of6



www.manaraa.com

schedule A(B) at T at a local time U > T has no e�ect, and multiple invocationsof schedule A(B) at T have the same e�ect as a single invocation.5. For the message types used in our protocols, transmission and processing delays(as measured on any correct processor's clock) are bounded by a constant �.This assumption can be stated formally as follows. Let p and q be two correctprocessors linked by a correct link l and let r be any correct processor. If u isthe real time at which p invokes a send(m) command on l and v is the real timeat which q �nishes receiving and processing m, then0 < Cr(v)� Cr(u) � �:The � upper bound includes the time spent by m in the message queues orbu�ers of l, the time needed to transmit the message on the link l, and the timeneeded by q to receive and process m. Since in practice the CPU time required forprocessing a message m by a processor task is negligible compared to the queueingdelays that a�ect m while in transit between di�erent processors, we make thesimplifying assumption that message processing time is zero. The � upper boundalso accounts for imprecisions in measuring real time delays which result fromclock drift or the need to periodically adjust clocks to keep them synchronized.The magnitude of this constant reects the worst case load (maximum number ofevents per time unit) a system is speci�ed to handle. Note that in order to satisfythis assumption, a correct processor must fairly allocate processing time to eachlink so that it is not possible for faulty processors to swamp the network with somany messages that messages from correct processors never get through to othercorrect processors. Moreover, neither correct nor faulty processors can generateso many updates so rapidly that any processor or link becomes overloaded andcannot meet its speci�cations.6. At any component of the system the number of send, receive, update, and deliverevents that take place during any �nite amount of time is �nite. (This assumptionis needed so that we can argue by induction on sequences of events.) Moreover,we assume a �xed upper bound on the number of updates generated at anyprocessor per unit time. (This assumption corresponds to a maximum speci�edload that our system must handle.)4 Information Di�usionWe consider three properly nested failure classes: (1) omission failures, (2) timing failures,and (3) authentication-detectable Byzantine failures. For each one of these classes, wepresent an atomic broadcast protocol that tolerates up to � faulty processors and up to �faulty links, where � and � are arbitrary nonnegative integers. Note that � is the assumed7



www.manaraa.com

maximum number of processors that may su�er failures in any run of our protocol. Thenumber of events that could be considered failures at a faulty processor is not bounded.Likewise, � is the assumed maximum number of links that may fail in any run of theprotocol. The number of events (e.g. lost messages) that could be considered failures ata faulty link is not bounded. The termination time � of each protocol is computed as afunction of the failure class tolerated, of the � and � parameters, of the known constants� and �, and of the largest diameter d of a surviving communication network G-F, for allpossible subnetworks F containing up to � processors and � links (the diameter of G-F isthe longest distance between any two processors in G-F).All protocols are based on a common communication technique called information di�usion:(1) when a correct processor learns new information, it propagates the information to itsneighbors by sending messages to them, and (2) if a correct neighbor does not already knowthat piece of information, it in turn propagates the information to its neighbors by sendingthem messages. This ensures that, in the absence of network partitions, information di�usesthroughout the network to all correct processors. This technique is called propagation ofinformation and characterized relatively abstractly in a 1983 paper by Segall [SE]. However,the concept of di�usion or \ooding" has been used in distributed systems work at leastsince the early seventies, usually without reference to a particular source.Information di�usion is a communication technique, that is, a method for conveying infor-mation among processors. What is conveyed is not a message (i.e. a sequence of bits),but rather a proposition. For now, we only give motivating examples of terms such as\proposition" and \learn." These terms are de�ned precisely in the formal sections dealingwith correctness proofs. A processor p can convey to a neighbor q a proposition such as\processor s has initiated the atomic broadcast of an update � at time T on its clock" bysending q a message (T,s,�) containing the arguments of the proposition. Processors learnthe truth of the propositions conveyed by a distributed protocol by receiving messages or byobserving the passage of time on their local clocks. For example, to learn the proposition\s has initiated the broadcast of � at time T on its clock" a processor q has to receivea new message (T,s,�). As another example, consider a processor p speci�ed to initiateatomic broadcasts at times T1, T2, ... known to another processor q. If q receives broadcastTi by Ti + �, but does not receive broadcast Ti+1 by Ti+1 + �, q learns the proposition\p is not correct at time Ti+1 on its clock" [Cr]. For each correctness proof, we will usethe term \learn" for an action that can only happen once at a processor for any particularproposition. When we speak of a \known constant", like known broadcast termination time�, we mean a constant that is recorded in the main storage of each processor.The speci�c meanings of \proposition" and \learn" will vary with protocols and failuremodels. However, the correctness proofs of all the protocols presented in this paper arebased on a theorem we call the di�usion induction principle, that treats these terms asprimitives. For purposes of this principle, \propositions" are primitive objects from some�xed set Prop and \learn" is a primitive relation on the set Processor � Prop � Real-Time,8



www.manaraa.com

expressed informally by saying, \processor p learns proposition � at real time t." We saya message m conveys proposition � to processor p if, whenever m is received by p at timet, there is a time u � t such that p learns � at u. We say that a proposition  propagates(among neighbors) if, for every correct pair of neighbors p and q linked by a correct link,and for every real time u, if p learns  at u, then there is a real time v such that q learns at v and, Cr(v) � Cr(u) � �, where r is any correct processor. Note that, to ensurethat a proposition  propagates it is su�cient (but not necessary) for p to send a messageconveying  to q at u. This ensures that q learns  within delta clock time units from themoment p learned  , unless q learned  earlier, for example by receiving another messageconveying  from another processor. A proposition  di�uses (in G) if for any correctprocessors p, q, and r, and for any real time u, if p learns  at u, then there is a real timew such that q learns  at w and Cr(w) � Cr(u) � d�, where d is the largest diameter ofa surviving communication network G-F, for all possible subnetworks F containing up to� faulty processors and � faulty links. From our assumptions we can now easily prove theDi�usion Induction Principle.Theorem: If proposition  propagates among neighbors, then  di�uses in G.Proof: Assume  propagates to neighbors. Let r be any correct processor in G. Let d bethe maximum possible diameter of a surviving subnetwork of G. We say  di�uses fromp to q in subnetwork G' if, when p learns  at u, then there is a real time w such that qlearns  at w and Cr(w)�Cr(u) � d(p; q)�, where d(p,q) is the distance from p to q in G'.It su�ces to prove that, for any surviving network G' of correct components, and for anyprocessors p and q of G',  di�uses from p to q. We prove this by induction on the distanced(p,q) in G'. For d(p,q)=1, di�usion is immediate from our hypothesis that  propagates.We now suppose that  di�uses from p to q for all processors p and q in G' with d(p,q)< k, where k > 1. Let p and q be correct processors in G' such that the distance d(p,q)between p and q is k. The hypothesis k>1 implies the existence of an intermediate correctprocessor s in G' such that d(p,q)=d(p,s)+d(s,q), where the distances d(p,s) and d(s,q) areboth smaller than k. If p learns  at u, then, by the induction hypothesis, there is a time vsuch that s learns  at v and Cr(v)�Cr(u) � d(p; s)�. Again, by the induction hypothesis,there is a time w such that q learns  at w and Cr(w) � Cr(v) � d(s; q)�. It follows thatCr(w)� Cr(u) � d(p; q)�. 2We call the time d� the di�usion time of the surviving network G-F in the presence ofat most � processor failures and � link failures. We use the Di�usion Induction Principleto infer di�usion from propagation in our proofs of protocol correctness. The principle isindependent of the choice of the failure class to be tolerated; however, the de�nitions of\propagates" and \di�uses" depend on the de�nition of \learn," which will vary dependingon the failure class considered. While this principle captures informal reasoning that hasbeen used for years, we believe our formulation of the principle is novel. Note that thecorrectness of the principle depends on bounds on the clock time measured at any correctprocessor, not simply at one of the participants in a message transmission or receipt.9



www.manaraa.com

5 First Protocol: Tolerance of Omission FailuresEach message sent according to our �rst protocol carries its initiation time (or timestamp) T,the name of the source processor s, and a replicated storage update �. Each atomic broad-cast is uniquely identi�ed by its timestamp T and its initiator's name s (by Assumptions1 and 3). As messages are received by a processor, they are stored in a history log H localto the processor until delivery to the local synchronous replicated storage manager. Theorder property required of atomic broadcasts is achieved by letting each processor deliverthe updates it receives in the order of their timestamp, by ordering the delivery of updateswith identical timestamps in increasing order of their initiator's name, and by ensuring thatno correct processor begins the delivery of updates with timestamp T before it is certainthat it has received all updates with timestamp at most T that it may ever have to deliver(to satisfy the atomicity requirement).Note that any message that is received in the omission failure only context must have beensent correctly and must be deliverable. For omission failures, the local time by which aprocessor is certain it has received copies of each message timestamped T that could havebeen received (and hence, delivered) by some correct processor is T + �� + d� + �. We callthis clock time the delivery deadline for updates with timestamp T. The intuition behindthis deadline is as follows. The term �� is the worst case delay between the initiation of abroadcast (T,s,�) and the moment a �rst correct processor r learns of that broadcast. Itcorresponds to the case when the broadcast source s is a faulty processor and between s andr there is a path of � faulty processors, each of which forwards just one message (T,s,�) onone outgoing link where each of these messages experiences a delay of � clock time units.The term d� is the time su�cient for r to di�use information about the broadcast (T,s,�)to any correct processor p in the surviving network. The last term ensures that any updateaccepted for delivery by a correct processor q whose clock is in advance of the sender'sclock is also accepted by a correct processor p whose clock is behind the sender's clock. Weassume all processors know the protocol termination time �o � �� + d� + �.To keep the number of messages needed for di�using an update �nite, each processor p thatreceives a message (T,s,�) relays the message (to all its neighbors except the one that sentthe message) only if it receives (T,s,�) for the �rst time. If p inserts all received messagesin its local history H (and never removes them), p can easily test whether a newly arrivedmessage m was or was not seen before by evaluating the test m 2 H . We call this test the\deja vu" acceptance test for the message m. The main drawback of the \deja vu" solutiondescribed above is that it causes local histories to grow arbitrarily. To keep the length ofH bounded, a history garbage collection rule is needed. A possible solution would be toremove from H a message (T,s,�) as soon as the deadline T +�o for delivering � passes onthe local clock. However, a simple-minded application of the above garbage-collection rulewould not be su�cient for ensuring that local histories remain bounded, since it is possiblethat copies of a message (T,s,�) continue to be received by a correct processor p after the10



www.manaraa.com

delivery deadline T+�o has passed on p's clock. Such duplicates would then pass the \dejavu" acceptance test and would be inserted again in the history of p. Since such \residual"duplicates will never be delivered (see Assumption 4), they can cause p's history to growwithout bound.The reader might at this point wonder how is it possible that, a message timestamped Tcould arrive at a correct processor p after its delivery deadline T + �o has passed, whenthis deadline was precisely computed to ensure that p receives before T +�o a copy of eachmessage timestamped T that it will ever have to deliver? The following scenario shows thatthis is possible. Consider a fully connected network of three processors p, q, r and a protocoltolerant of one omission failure, with termination time 2�+ �. Consider that p initiates thebroadcast of an update � at local time T, the message (T,p,�) from p to r is lost (due to anomission failure), and the (T,p,�) messages from p to q, from q to r, and from r to p relayedaccording to the above \deja vu" rule all take � clock time units. If � < � (this is possiblefor probabilistic clock synchronization algorithms [Cri]) then p receives a message (T,p,�)from r at local time T + 3� after the delivery deadline T + 2� + � has passed. To preventsuch residual messages from accumulating in local histories, we introduce a \late message"acceptance test. This test discards a message (T,s,�) if it arrives at a local time U past thedelivery deadline T +�o, i.e. if U � T +�o. The \deja vu" and \late message" acceptancetests ensure together that updates are broadcast by using a �nite number of messages andthat local histories stay bounded (by Assumption 6, processors broadcast only a boundednumber of updates per time unit).A detailed description of our �rst atomic broadcast protocol is given in Figures 1, 2, and 3.Each processor runs three concurrent tasks: a Start broadcast task (Figure 1) that initiatesan atomic broadcast, a Relay task (Figure 2) that forwards atomic broadcast messages toneighbors, and a Delivery task (Figure 3) that delivers broadcast updates to the synchronousreplicated storage layer. All tasks of a processor have access to a constant L of type Set-of-Link containing the identity of all links adjacent to the processor. All tasks of all processorshave access to the termination time constant �o de�ned earlier. In what follows we referto line j of Figure i as (i.j).1 task Start;2 var T: Time; �: Update; s: Processor; l: Link;3 cycle wait-for-broadcast(�); T  clock;4 for all l 2 L do send(T,myid,�) on l od;5 add (T,s,�) to H;6 schedule Delivery(T) at T + �o;7 endcycle; Figure 1. Start Task of the �rst protocolA process triggers the broadcast of an update � by invoking a broadcast(�) command on its11



www.manaraa.com

underlying processor. This will activate the Start task at the matching wait-for-broadcastentry point with � as input (1.3). The broadcast of � is identi�ed by the local time T atwhich � is received (1.3) and the identity of the sending processor, obtained by invoking thefunction \myid" (1.4). This function returns di�erent processor identi�ers when invokedby distinct processors (Assumption 1). The broadcast of � is initiated by invoking sendcommands on all outgoing links L (1.4). We do not assume that the execution of thecommand in line (1.4) is atomic with respect to failures: a processor failure can preventmessages from being sent on some links. The fact that the broadcast of � has been initiatedis then recorded in a history variable H, a set of triples shared by all broadcast layer tasks:var H: Time � Processor � Update.We assume that H is initialized to the empty set fg at processor start. Once the history His updated (1.5), the Delivery task is scheduled to execute with input parameter T at localclock time T + �o to deliver the update (1.6).1 task Relay;2 var U,T: Time; �: Update; s: Processor; i,l: Link;3 cycle receive(T,s,�) from i; U  clock;4 if U � T + �o then \late message" iterate fi;5 if (T,s,�) is in H then \deja vu" iterate fi;6 for all l 2 L-fig do send(T,s,�) on l od;7 add (T,s,�) to H;8 schedule Delivery(T) at T + �o;9 endcycle; Figure 2. Relay Task of the �rst protocolThe Relay task uses the command receive to receive messages formatted as (T,s,�) fromneighbors (2.3). After a message is received, the output parameter i contains the identityof the incoming link over which the message arrived. If the message is a duplicate of amessage that was already received (2.5) or delivered (2.4) then it is discarded (the meaningof the iterate command is to skip the execution of the rest of the loop body and begin anew iteration). A message is accepted if it passes the late message (2.4) and deja vu (2.5)tests of the Relay task. If (T,s,�) is accepted, then it is relayed on all outgoing links excepti (2.6), it is inserted in the history variable (2.7), and the Delivery task is scheduled toexecute with input parameter T at local time T + �o to deliver the received update (2.8).1 task Delivery(T:Time);2 var val: Processor � Update;3 val  f(s,�) j (T,s,�) 2Hg;4 sort val by processor name lexicographically;12



www.manaraa.com

5 for all (s,�) 2 val in order do deliver(�) od;6 delete all triples with �rst element T from H;Figure 3. Delivery TaskThe Delivery task (Figure 3) starts at clock time T + �o to deliver updates timestampedT in increasing order of their sender's identi�er ((3.3)-(3.5)) and to delete all informationabout these broadcasts from the local history H (3.6).5.1 Proof of Correctness for the First ProtocolWe use the di�usion induction principle to prove the correctness of our �rst protocol (de-noted O in this proof) under the assumption that during any protocol execution there canbe at most � processors that su�er omission failures and at most � links that su�er omissionfailures. The propositions di�used by O are of the form  � \processor s broadcasts � atlocal time T." We say correct processor p learns  at a real time t if either (a) p=s, pinitiates the di�usion of messages (T,s,�) at t, and Cs(t) = T , or (b) p 6= s and p receivesat t a message (T,s,�) for the �rst time. We denote by O' the protocol with in�nite localhistory obtained by removing from O the \late message" acceptance test (2.4) and the localhistory garbage collection (3.6).Lemma 1: If all processors follow protocol O', then  propagates among neighbors.Proof: Assume that correct processor p learns  at real time t and let q be a correctneighbor of p linked by a correct link to p. If p=s, then p sends (1.4) a message (T,s,�) toq at t. By Assumption 5, there is a real time u at which the message is received by q, suchthat for any correct processor r: Cr(u)� Cr(t) � �. If (T,s,�) is not in the history of q, qlearns  at u and inserts the message in its history. If (T,s,�) is in q's history at u, then qmust have learned  at an earlier real time v � u. By the monotonicity of the Cr clock, qlearned  at a clock time Cr(v) � Cr(u), so the inequality Cr(v)� Cr(t) � � holds in thiscase too. If p 6= s, let t be the real time at which p learns  by receiving a message (T,s,�)for the �rst time from some neighbor q'. If q=q', there is a time u<t such that q learned  at u and Cr(u)� Cr(t) < 0, so Cr(u)� Cr(t) � �. If q 6= q0, by an argument analogous tothat for the case p=s before, we can show that q learns  within � clock time units eitherbecause q receives the message (T,s,�) sent by p at t for the �rst time or because q learned earlier. 2Lemma 2: If all processors follow protocol O' and a correct processor inserts a message(T,s,�) in its history, then each correct processor inserts (T,s,�) in its history beforelocal time T +�o. 13



www.manaraa.com

Proof: Let u be the earliest real time at which a correct processor p inserts (T,s,�) in itshistory. If p=s, then by di�usion induction, each correct processor q inserts (T,s,�) in itshistory by a real time v such that Cq(v) � Cq(u)+d�. Since Cq(u) < Cs(u)+�, it follows thatthe local time by which q inserts (T,s,�) in its history is Cq(v) < Cs(u) + d� + � � T +�o.Consider now the other case p 6= s. In this case p receives a message (T,s,�) for the�rst time at real time u. Since only omission processor and link failures are possible, themessages supposed to be sent by a processor are either received on time (as if the processorwere correct) or are never received (for example, because the processor has crashed beforesending them or a link su�ers an omission failure). Let t be the real-time at which processors initiates the broadcast of update �, Cs(t) = T . If correct processor p learns  at real timeu by processing a message that traversed a path of h hops (i.e. h links) after it was sentby s, then it is easy to prove by induction on h (in a manner similar to that illustrated forthe proof of the di�usion induction principle) that, for any processor r: Cr(u)�Cr(t) � h�.By hypothesis, there can be at most � faulty processors, so the longest possible acyclicpath (i.e. sequence of processors and links without repetition) that a message originatingat processor s can traverse before being accepted by a �rst correct processor contains �hops. Since u is the earliest real time at which some correct processor p learns  , it followsthat Cr(u)�Cr(t) � ��, for any processor r. By di�usion induction every correct processorq will insert (T,s,�) in its history at a real time v such that, Cr(v) � Cr(u) � d�, for anyprocessor r. From the above, it follows in particular that Cq(v) � Cq(t) + �� + d�. SinceCq(t) < Cs(t) + �, we �nally have Cq(v) < Cs(t) + �� + d� + � = T + �o. 2Lemma 3: If all processors follow protocol O and a correct processor inserts a message(T,s,�) in its history, then each correct processor inserts (T,s,�) in its history beforelocal time T +�o. The history H of any processor remains bounded.Proof: We �rst prove that the protocols O and O' are equivalent, in the sense that a message(T,s,�) is accepted by a correct processor p which follows O if and only if the same messageis accepted by p following O'. Clearly, each message inserted in the history by a processorfollowing O will also be inserted if p were following O', since the set of messages that passthe two acceptance tests \late message" and \deja vu" is included in the set of messagesthat pass the \deja vu" test. Assume that a correct processor p follows O' and inserts amessage (T,s,�) in its history. If p=s, then p also inserts the message in its history followingO, since the O and O' Start tasks are identical. Consider now that p 6= s. By Lemma 2,the \late message" test (2.4) at p will evaluate to false, so (T,s,�) will pass the test andwill be inserted in the history if p followed O. The �rst part of Lemma 3 now follows fromLemma 2.Because of the \late message" acceptance test, and the assumption that only omissionfailures can occur, the history of each correct processor contains at any local time T onlymessages with timestamps in the range [T � �o,T + �). Since the number of processorsis bounded, and each processor can broadcast only a bounded number of messages in anybounded time interval, it follows that the total number of messages which can exist at any14



www.manaraa.com

point in time in H is bounded. 2Theorem 1: The �rst protocol possesses the termination, atomicity, and order properties.Proof: If an update � is received by the Start task of correct processor s at local time T,then by Lemma 3, every correct processor adds (T,s,�) to its (bounded) history H beforelocal time T + �o. Moreover, examination of the Start and Relay tasks shows that acorrect processor cannot add (T,s,�) to H without scheduling its Delivery task for localtime T + �o with input T. Lemma 3 also implies that, whether the initiator is correct ornot, if any correct processor adds (T,s,�) to its history, then all do. Thus Lemma 3 impliesboth termination and atomicity for the protocol. Since (by Assumption 4) the Delivery taskdelivers updates with di�erent timestamps in timestamp order, and orders the delivery ofupdates with same timestamp in increasing order of their originator's name, our protocolalso satis�es the order property. 25.2 The First Protocol is Not Tolerant of Timing FailuresWe construct a counter-example showing that the occurrence of a timing failure can leadto a violation of the atomicity property. Consider a totally connected network of fourprocessors s (sender), f (faulty), e (early, correct), and l (late, correct), such that e's clockis z, 0<z< �, time units in advance of l's clock, i.e. when l's clock indicates U, e's clockindicates U+z. Suppose that the Start task of s is interrupted by a crash so that a message(T,s,�) is sent only to f. Suppose that the faulty processor f, delays forwarding messages(T,s,�) to the correct processors e and l in such a way that the messages sent by f arrivewhen e's clock shows T + �o + z=2 and l's clock shows T + �o � z=2. Clearly, � cannotbe delivered at e (2.4), but since the message arrives at l before l's clock shows T + �o,the message is accepted at l, where the update � is delivered at local time T + �o. Theatomicity requirement is therefore violated.6 Second Protocol: Tolerance of Timing FailuresThe �rst protocol is not tolerant of timing failures because there is a �xed clock time interval,independent of the number of faulty processors, during which a message is unconditionallyaccepted by a correct processor. As illustrated in the counter-example above, this createsa real time \window" during which a message might be \too late" for some (early) correctprocessors and \in time" for other (late) correct processors. To achieve atomicity in thepresence of timing failures, we must ensure that if a �rst correct processor p accepts amessage m, then all other correct neighbors q to which p relays m also accept m. Aneighbor q does not know whether the message source p is correct or not. However, if pis correct, q must accept m if the information stored in it tells q that the clock time delay15



www.manaraa.com

between p and q is at least -� (case when p's clock is very close to being � time units behindq's and the message propagation delay between p and q is very close to being 0) or at most� + � (case when p's clock is very close to being � time units in advance of q's and themessage from p to q takes � time units). To be able to evaluate the time a message spendsbetween two neighbors, we store in the message the number h of hops traversed by it.A processor will reject messages that have taken longer than �+ � clock time units per hopor are more than � clock time units per hop early. The need for a lateness test is motivatedby the example in Section 5.1. We need an earliness test because we wish to maintain theproperty that the history log at any correct processor remains bounded. Otherwise, somefaulty processor with a very fast clock might send the updates it has to send much earlierin real-time than it is supposed to, forcing other correct processors to keep them in theirhistory logs for an unbounded amount of time. This type of faulty behavior may not bevery common in practice, but it does �t the de�nition of early timing failure.Formally, we use the following timeliness acceptance test: a correct processor q accepts amessage timestamped T with hop count h if it receives it at a local time U such that:T - h � < U < T + h(� + �).Since, by hypothesis, there can be at most a path of � faulty processors from a (faulty)sender s to a �rst correct processor p, and the message accepted must pass the above testat p, it follows that a message can spend at most �(� + �) clock time units in the networkbefore being accepted by a �rst correct processor. From that moment, it needs at mostd� clock time units to reach all other correct processors. Given the � uncertainty on clocksynchrony the termination time of the second protocol is therefore: �t = �(�+ �) + d� + �.The Start task of the second protocol (Figure 4) is identical to that of the �rst except forthe addition of a hop count to all messages. At origin, this hopcount is initialized to 1 (4.4).1 task Start;2 var T: Time; �: Update; s: Processor; l: Link;3 cycle wait-for-broadcast(�); T  clock;4 for all l 2 L do send(T,myid,1,�) on l od;5 add (T,s,�) to H;6 schedule Delivery(T) at T + �t;7 endcycle; Figure 4. Start Task of the second protocolIn addition to the tests used for providing tolerance of omission failures (5.6, 5.7) the Relaytask of the second protocol (Figure 5) also contains the timeliness tests discussed above(5.4, 5.5). The hop count h carried by messages is incremented (5.8) every time a messageis relayed. The Delivery task of the second protocol is identical to that of the �rst protocol.16



www.manaraa.com

1 task Relay;2 var U,T: Time; �: Update; s: Processor; h: Integer; i,l: Link;3 cycle receive(T,s,h,�) from i; U  clock;4 if U > T-h� then \too ealry" iterate fi;5 if U < T+h(� + �) then \too late" iterate fi;6 if U � T + �t then \late message" iterate fi;7 if (T,s,�) is in H then \deja vu" iterate fi;8 for all l 2 L-i do send(T,s,h+1,�) on l od;9 add (T,s,�) to H;10 schedule Delivery(T) at T + �t;11 endcycle; Figure 5: Relay Task of the second protocol6.1 Correctness of the Second ProtocolThe propositions  di�used by our second protocol (which we denote T in this proof) havethe same form as those di�used by the �rst protocol: \processor s broadcasts update �at time T on its clock." We say that correct processor p learns  at real time t if either(a) s=p, s initiates the broadcast of � at t, and Cs(t) = T , or (b) p 6= s and p receivesfor the �rst time at t a message (T,s,h,�) that passes both the \too early" T-h� < Cp(t)and the \too late" Cp(t) < T + h(� + �) timeliness acceptance tests. We denote by T ' theprotocol with in�nite local histories that is obtained by removing from T the \late message"acceptance test (5.6) and the local history garbage collection (4.6).Lemma 4: If all correct processors follow protocol T ' then  propagates among neighbors.Proof: Assume correct processor p learns  at real time t and let q be a correct neighborlinked by a correct link to p. We analyze two cases: p=s and p 6= s If p=s then p sends amessage (T,s,1,�) to q at t (line 4.4 of T '). We want to show that the message q receiveswill pass the timeliness acceptance tests of q. By Assumption 5, the (T,s,1,�) messageis received by q at a real time u such that Cq(u) � Cq(t) + �. Since, by Assumption 3,Cq(t) < Cs(t) + �, it follows that Cq(u) < Cs(t) + � + �, i.e. the \too late" acceptancetest is passed at q. The \too early" acceptance test at q is passed because, by Assumption5 and the monotonicity of Cs (Assumption 3), we have Cs(t) � � < Cs(u) � � and byAssumption 3 we have Cs(u)� � < Cq(u). Consider now the case p 6= s. Assume p learns by receiving from some processor q' a message (T,s,h,�) which passes the \too early"and \too late" acceptance tests, i.e. T-h � < Cp(t) and Cp(t) < T + h(� + �). Let q bea correct neighbor linked to p by a correct link. If q=q', q already learned  by t, so letus only investigate the more interesting case q 6= q0. By line (5.8) p sends at t a message(T,s,h+ 1,�) to q, and by Assumption 5 the message is received at q at a real time u such17



www.manaraa.com

that Cq(u) � Cq(t)+�. We have to show that this message passes the timeliness acceptancetests at q. Since, by Assumption 3, Cq(t) < Cp(t) + �, it follows that Cq(u) < Cp(t) + �+ �.From the above inequality and our hypothesis Cp(t) < T + h(� + �), it now follows thatCq(u) < T + (h + 1)(� + �), i.e., the \too late" acceptance test is passed at q. The \tooearly" acceptance test is passed because, by Assumptions 3 and 5, Cp(t)�� < Cq(u), which,together with our hypothesis T-h � < Cp(t), implies T-(h+1) � < Cq(u). 2Lemma 5: If all correct processors follow protocol T 0 and a correct processor inserts (T,s,�)in its history, then each correct processor inserts (T,s,�) in its history before local timeT +�t.Proof: Let t be the earliest real time at which some correct processor p inserts (T,s,�) in itshistory. If p=s, then by a reasoning similar to that for the case p=s in the proof of Lemma2, we conclude that each correct processor q inserts (T,s,�) in its history before local timeT + d� + � � T + �t. If p 6= s, let (T,s,h,�) be the message by which p learns  . Sincein the worst case there can be a path of at most � faulty processors between s and p (i.e.h� �) and the message passes p's \too late" acceptance test, we have Cp(t) < T + �(�+ �).By di�usion induction there exists a real time u such that each correct processor q learns at u and Cp(u) � Cp(t) + d�. Since, by Assumption 3, Cq(u) < Cp(u) + �, it follows thatCq(u) < T + �(� + �) + d� + �. 2Lemma 6: If all processors follow protocol T and a correct processor inserts a message(T,s,�) in its history, then each correct processor inserts (T,s,�) in its history beforelocal time T + �t. If the maximum number of updates broadcast by a processor pertime unit is bounded, the history H of any processor stays bounded.Proof: The proof is similar to that of Lemma 3, the main di�erence being that, in the caseof timing failures, for any local time T, histories can contain messages with timestamps inthe range [T-�t; T + (� + 1)�). 2Theorem 2: The second protocol possesses the termination, atomicity, and order properties.The proof is similar to that of Theorem 1. 26.2 The Second Protocol is Not Tolerant of Byzantine FailuresWe construct a counter-example showing that a Byzantine failure occurrence can lead to aviolation of the atomicity property. Consider a totally connected system of four processorss (sender), f (faulty), e (early, correct), and l (late, correct), such that e's clock is z timeunits in advance of l's clock, 0 < z < �, i.e. when l's clock indicates U, e's clock indicatesU+z. Assume �=2, and �=0; so �t is 3(�+�). Suppose that the broadcast of (T,s,1,�) by s18



www.manaraa.com

is interrupted by a crash so that the message is sent only to f. Suppose that f \by mistake"increments the hop count by two instead of one, and forwards the message (T,s,3,�) to thecorrect processors e and l in such a way that these messages arrive when e's clock showsT+�t + z=2 and l's clock shows T+�t � z=2. The update � will be delivered at l but notat e. The atomicity requirement is thus violated.7 Tolerance of Authentication-Detectable Byzantine Fail-uresAs illustrated by the previous counter-example, a \Byzantine" processor can confuse a net-work of correct processors by forwarding appropriately altered messages on behalf of correctprocessors at appropriately chosen moments. One way of preventing this phenomenon isto authenticate the messages exchanged by processors during a broadcast [DS], [LSP], sothat messages corrupted by \Byzantine" processors can be recognized and discarded bycorrect processors. In this way, we are able to handle authentication-detectable Byzantinefailures in a manner similar to the way we handle timing failures. Ignoring (for simplic-ity) the increase in message processing time due to authentication, we set the terminationtime of the third protocol to be the same as the termination time of the second protocol:�b = �(�+ �) + d� + �. The reader should be warned that the � in this formula is likely tobe signi�cantly larger than the corresponding term for the previous protocol because of thecost of authentication processing.The detailed implementation of our third protocol is given in Figures 6-12. We assume thateach processor p possesses a signature function �p, which, for any string of characters x,generates a string of characters y=�p(x) (called the signature of p on x). Every processorq knows the names of all other processors in the communication network, and for eachp2G, q has access to an authentication predicate �(x; p; y) which yields true if and onlyif y= �p(x). We assume that if processor q receives a string (x,p,y) as part of a messagem from any processor, and �(x; p; y) is true, then p actually sent the string (x,p,y) in m.(If the authentication predicate fails to detect message forgery, then our last protocol canno longer guarantee atomicity in the presence of Byzantine failures.) The proper selectionof the �p and � functions for a given environment depends on the likely cause of messagecorruption. If the source of message corruption is unintentional (e.g., transmission errorsdue to random noise on a link or hardware malfunction) then simple signature and authen-tication functions like the error detecting/correcting codes studied in [PW] are appropriate.If the source of message corruption is intentional, e.g., an act of sabotage, then more elabo-rate authentication schemes like those discussed in [RSA] should be used. In any case thereis always a small but non-zero probability that a corrupted message will be accepted asauthentic.We implement message authentication by using three procedures \sign", \cosign", and19



www.manaraa.com

\authenticate", and a new signed message data type \Smsg" (Figure 6). These are alldescribed in a Pascal-like language supporting recursive type declaration.1 type Smsg =2 record case : tag: (�rst,relayed) of3 �rst: (timestamp: Time; update: Update);4 relayed: (incoming: Smsg);5 procid: Processor;6 signature: string;7 end; Figure 6: The Signed-Message data typeA signed message (of type Smsg) that has been signed by k processors p1; :::; pk has thestructure(relayed; : : :(relayed; (first; T; �; p1; s1); p2; s2); : : :pk; sk)where T and � are the timestamp and update inserted by the message source p1 and si aresignatures.1 procedure sign(in T:Time; �:Update; out x: Smsg);2 begin x.tag  `�rst'; x.timestamp T;3 x.update �; x.procid myid;4 x.signature �myid(x.tag,T,�);5 end; Figure 7: The sign procedureThe sign procedure (Figure 7) is invoked by the originator of a broadcast (T,s,�) to produce amessage x containing the originator's signature. The co-sign procedure (Figure 8) is invokedby a processor r which forwards an incoming message x already signed by other processors;it yields a new message y with r's signature appended to the list of signatures on x.1 procedure co-sign(in x:Smsg; out y: Smsg);2 begin y.tag  `relayed'; y.incoming  x;3 y.procid  myid; y.signature �myid (y.tag,x);4 end; Figure 8: The co-sign procedure20



www.manaraa.com

The authenticate procedure (Figure 9) veri�es the authenticity of an incoming message. Itassigns the Boolean output parameter a the value false if an alteration of the original messageis detected. If no alteration of the original message content is detected, the �nal value of ais true and the remaining output parameters T, � and S are assigned the timestamp, theoriginal update included in the message and the sequence S of processor names that havesigned the message, respectively. The identity of the initiator is the �rst element of thesequence, denoted �rst(S), and the number of hops (i.e., the number of intermediate links)traversed by the message is the length of the sequence, denoted jSj.1 procedure authenticate(in x:Smsg; out a: Boolean; T:Time;2 �:Update, S:Sequence-of-Processor);2 begin if x.tag=`�rst' and :�((x.tag,x.timestamp,x.update),x.procid,x.signature)3 or x.tag=`relayed' and :�((x.tag,x.incoming),x.procid,x.signature)4 then a false5 else if x.tag=`�rst'6 then T x.timestamp; �  x.update; S <>; a true;7 else authenticate(x.incoming,a,T,�,S)8 fi;9 fi;10 append(S,x.procid);11 end; Figure 9: The authenticate procedureExcept for the change concerning the authentication of messages, the structure of the Starttask of the third protocol (Figure 10) is the same as that of the second protocol. In orderto handle the case in which a faulty processor broadcasts several updates with the sametimestamp, the type of the history variable H is changed tovar H: Time � (Processor � (Update [ f ? g)),where the symbol ? denotes a \null" update (?62 Update). Speci�cally, if a processorreceives several distinct updates with the same broadcast identi�er, it associates the nullupdate with that broadcast. Thus, a null update in the history is an indication of a faultysender.1 task Start;2 var T: Time; �: Update; x: Smsg; l: Link;3 cycle wait-for-broadcast(�); T  clock;4 sign(T,�,x);5 for all l 2 L do send(x) on l od; 21



www.manaraa.com

6 add (T,s,�) to H;7 schedule Delivery(T) at T + �b;8 endcycle; Figure 10: Start Task of the third protocol1 task Relay;2 var U,T: Time; �: Update; s: Processor; i,l: Link;3 x,y: Smsg; a: Boolean; S: Sequence-of-Processor;4 cycle receive(x) from i; U  clock;5 authenticate(x,a,T,�,S);6 if a=false then \forged message" iterate fi;7 if duplicates(S) then \duplicate signatures" iterate fi;8 if U > T-jSj � then \too ealry" iterate fi;9 if U < T+jSj (� + �) then \too late" iterate fi;10 if U � T + �b then \late message" iterate fi;11 s �rst(S);12 if there is �' such that (T,s,�') is in H13 then if �'=? then \faulty sender" iterate fi;14 if �'=�15 then \deja vue" iterate16 else replace (T,s,�') by (T,s,?) in H17 fi18 else add (T,s,�) to H;19 schedule Delivery(T) at T + �b20 fi;21 co-sign(x,y);22 for all l 2 L-fig do send(y) on l od;23 endcycle; Figure 11. Relay Task of the third protocolThe Relay task of the third protocol (Figure 11) works as follows. Upon receipt of amessage (11.4), the message is checked for authenticity (11.5) and if corrupted, the messageis discarded (11.6) Then, the sequence of signatures of the processors that have acceptedthe message is examined to ensure that there are no duplicates; if there are any duplicatesignatures, the message is discarded (11.7). Since processor signatures are authenticated,the number of signatures jSj on a message can be trusted and can be used as a hop countin determining the timeliness of the message (11.8, 11.9). No confusions such as thoseillustrated in the previous counter-example can occur unless the authentication scheme iscompromised. If the incoming message is authentic, has no duplicate signatures, and is22



www.manaraa.com

timely, then the history variable H is examined to determine whether the message is the�rst of a new broadcast (11.18). If this is the case, the history variable H is updated withthe information that the sender s=�rst(S) has sent update � at time T, the Delivery taskis scheduled to start processing and possibly delivering the received update at (local clock)time T+�b (11.19), and the received message is cosigned and forwarded (11.21, 11.22).If the received update � has already been recorded in H (because it was received via analternate path), it is discarded (11.15). If � is a second update for a broadcast identi�ed(T,s), then the sender must be faulty. This fact is recorded by setting H(T)(s) to the nullupdate (11.16). The message is then cosigned and forwarded so that other correct processorsalso learn the sender's failure (11.21, 11.22). Finally, if � is associated with a broadcastidenti�er to which H has already associated the null update (i.e., it is already known thatthe originator of the broadcast (t,s) is faulty), then the received update is simply discarded(11.13).1 task Delivery(T:Time);2 var val: Processor � (Update[f?g);3 val  f(s,�) j (T,s,�) 2H and � 6=?g;4 sort val by processor name lexicographically;5 for all (s,�) 2 val in order do deliver(�) od;6 delete all triples with �rst element T from H;Figure 12: Delivery Task of the third protocolThe Delivery task (Figure 12) delivers at local time T+�b all updates broadcast correctlyat time T. If exactly one update has been accepted for a broadcast initiated at clock timeT, then that update is delivered (12.3, 12.5), otherwise no update is delivered (12.3). Ineither case, the updates associated with broadcasts initiated at clock time T are deletedfrom H (12.6) to ensure H stays bounded.7.1 Correctness of the Third ProtocolOur third protocol (denoted B in this proof) di�uses two kinds of propositions: a proposition (T,s,�) of the (by now familiar) form \processor s broadcast update � at local time T"and a proposition �(T,s,�) of the form \either  (T,s,�) or there exist two distinct updates�1 and �2, such that processor s has initiated the broadcast of these updates with the sametimestamp T." A correct processor learns  (T,s,�) at real time t if either (a) p=s and pinserts (T,s,�) in its history at t, or (b) p 6= s and p receives a message x such that theauthenticate procedure terminates successfully by returning (true,T,�,S), s=�rst(S), andthe processing of x results in an update of the local history (either by adding (T,s,�) or(T,s,?) to H). For any update �, a correct processor p learns �(T,s,�) at real time t if itlearns  (T,s,�) at t or if there exist distinct updates �1 and �2, such that p learns  (T,s,�1)23



www.manaraa.com

at u � t and p learns  (T,s,�2) at t. Since, if p=s and p is correct, it is not possible for p tolearn that it broadcast two di�erent updates with identical timestamps, correct processorp learns �(T,s,�) at t if, and only if, (a) p adds (T,s,�) to H at t or (b) p receives att a message x such that the authenticate procedure terminates successfully by returning(true,T,�,S), s=�rst(S), and the processing of x results in the action H(T)(s) ? (11.16).We denote by B' the protocol with in�nite local history obtained from B by removing fromB the \late message" acceptance test (11.10) and the local history garbage collection (12.6).Lemma 7: If all correct processors follow protocol B' and processor s is correct, then (T,s,�) propagates among neighbors.The proof is analogous to that of Lemma 4. It relies on the observation that if the senders is correct, and a correct processor p learns  (T,s,�), then no correct neighbor q of p canever learn  (T,s,�1) with �1 6= �. Thus, the message p sends to q either causes q to insert(T,s,�) in its history or is simply discarded if q has already inserted (T,s,�) in its history.Lemma 8: If all correct processors follow protocol B' then �(T,s,�) propagates amongneighbors.Proof: Assume correct processor p learns �(T,s,�) at real time t, and let q be a correctneighbor linked by a correct link to p. If p=s, then p actually learns  (T,s,�) (recall acorrect processor uses di�erent timestamps for di�erent updates), and, by Lemma 7,  ,and hence �, propagate to q within � clock time units. Consider now the other (moreinteresting) case p 6= s and let x be the message received by p at t from some neighborq'. We have to analyze two cases: a) p learns �(T,s,�) by learning  (T,s,�) and b) plearns �(T,s,�) by learning  (T,s,�1) after earlier it learned  (T,s,�2), where �1 6= �2. If plearns �(T,s,�) from q' by learning  (T,s,�), then p forwards a message y with its signatureappended to those on x to all neighbors except q' (lines (11.18)-(11.22)). If q=q', then qalready learned  (T,s,�), and hence �(T,s,�), earlier. If q 6= q', q receives at some realtime u a message y conveying  (T,s,�). Our assumption that the link between p and q iscorrect implies that the message y passes the acceptance tests (11.8)-(11.10) at q. If, wheny is received, H(T)(s)=?, then q has already learned �(T,s,�) by u, else if the history ofq contains (T,s,�1) for some �1 6=?, then q learns  (T,s,�), and hence �(T,s,�), by timeu, else, q learns  (T,s,�), and hence �(T,s,�), at time u. Consider now the case b) whenp learns �(T,s,�) by learning  (T,s,�1) after it learned  (T,s,�2) earlier, �1 6= �2, and letq"6=q' be the neighbor which sent the message conveying  (T,s,�2) to p. If q 62 q',q", thenp has by t forwarded to q a message y" conveying  (T,s,�2) and at t p forwards anothermessage y' conveying  (T,s,�1), so q learns �(T,s,�). If q=q', then q learned  (T,s,�1)before t, and since p forwarded a message conveying  (T,s,�2) to q' before receiving fromq' the message x, it follows that q learns �(T,s,�) by the time it receives that message.If q=q", then q learned  (T,s,�2) before t, and since p forwarded a message y' conveying (T,s,�1) to all neighbors except q', q learned �(T,s,�) by the later of the time of receipt of24



www.manaraa.com

y' or the time q learned  (T,s,�2). The last case that remains to be analyzed is q'=q", i.e.the same neighbor q' sent to p the two messages conveying p  (T,s,�1) and  (T,s,�2). Ifq=q', then q learned  (T,s,�1) and  (T,s,�2), and hence �(T,s,�) by t, else, if q6=q', thenp forwards to q two messages conveying  (T,s,�1) and  (T,s,�2), so q learned �(T,s,�) bythe time it received the later of the two messages. 2Lemma 9: If all correct processors follow protocol B' and the initiator s of a broadcast(T,s,�) is correct, then each correct processor p inserts (T,s,�) in its local historybefore local time T+�b.The proof, which relies on Lemma 7, is analogous to the proof of Lemma 5 and is omitted.Lemma 10: If all correct processors follow protocol B' and, for any �, there is a correctprocessor p such that its history contains (T,s,�) or (T,s,?), then, for each correctprocessor q, q's history contains (T,s,�) or (T,s,?) before time T+�b on q's clock.Proof: If p=s, then p necessarily has (T,s,�) in its history and by di�usion inductionand Assumption 3, each correct q inserts (T,s,�) in its history before T+d� + � � T+�b.Consider now p 6= s. Recall that \p learns �(T,s,�) at t" is equivalent to \p inserts in itshistory either (T,s,�) or (T,s,?) at t." Let t be the earliest real time at which a correctprocessor p learns �(T,s,�). By a reasoning analogous to that in the proof of Lemma 5we have Cp(t) < T + �(� + �), and by, Lemma 8, di�usion induction and Assumption 3 itfollows that every correct processor q learns �(T,s,�) before time T+�(� + �) + d� + � onits clock. It thus follows that, when q's clock displays time T+�b, q's history is such thatit contains (T,s,�) or (T,s,?). 2Lemma 11: If all correct processors follow protocol B' and, for some T and s, there existsa correct processor p that inserts (T,s,?) in its history, then each correct processor qhas (T,s,?) in its history before local time T+�b.Proof: Suppose processor p inserts (T,s,?) in its history. Then there exist two updates �1,�2, �1 6= �2, such that p learns  (T,s,�2) after learning at an earlier time  (T,s,�1). Notethat, by de�nition, for any �, if some correct processor learns  (T,s,�), then it has (T,s,�)or (T,s,?) in its history. Thus, by Lemma 10, each correct processor has (T,s,�1) or (T,s,?)in its history and each correct processor has (T,s,�2) or (T,s,?) before local time T+�b.Since �1 6= �2, each correct processor must have (T,s,?) in its local history before localtime T+�b 2Lemma 12: If all processors follow protocol B and a correct processor s initiates at localtime T the broadcast of some update �, then all correct processors insert (T,s,�) intheir history before time T+�b on their clock. If a correct processor inserts (T,s,?) in25



www.manaraa.com

its history, then each correct processor inserts (T,s,?) in its history before local timeT+�b. If the maximum number of updates broadcast by a processor per time unit isbounded, the history H of any processor stays bounded.Proof: The proof, similar to that of Lemma 6, is omitted.Theorem 3: The third protocol possesses the termination, atomicity, and order properties.The proof, which relies on Lemma 12, is similar to that of Theorem 2 and is thereforeomitted.8 Performance8.1 MessagesIn the absence of failures, the initiator s of an atomic broadcast sends ds messages to itsneighbors, where ds denotes the degree of s (i.e. the number of its adjacent links). Eachprocessor q 6= s that receives a message from a processor p sends dq-1 messages to all itsneighbors (except p). Since the sum of all node degrees of a network is twice the numberof network links, it follows that each atomic broadcast costs 2m-(n-1) messages, where m isthe number of links and n is the number of nodes of the network. For example, an atomicbroadcast among 8 processors arranged in a 3-dimensional cube requires 17 messages in theabsence of failures.While we cannot compare the message cost of our algorithms directly with those of a roundbased model, we can compare them with the results of a straightforward conversion. Thereare two issues in such a conversion. The �rst is the issue of complete connectivity. Foralgorithms that are only designed for completely connected networks, some routing schememust be used to simulate the complete connectivity. In general messages must be sentalong many disjoint routes to overcome the failure of intermediate processors. Otherwise,the number of component failures tolerated by the converted protocol may be dramaticallyreduced from that of the original. However, there are round based protocols that do notdepend on complete connectivity (e.g. the fourth protocol of [LSP] based on authentication).In this case our message costs are as good but may not be better, since these protocolsusually use some variant of di�usion.For illustrative purposes, we consider the round based protocol in [DS] that was designedfor complete connectivity. Moreover, we consider a straightforward conversion of this pro-tocol to our model, using an arbitrary minimal length routing scheme to simulate complete\logical" connectivity between processors. Since \logical" messages sent by processors areimplemented as sequences of (one-hop) messages sent among neighbors, some of the mes-sages sent in each round will be redundant. Indeed, if a \logical" message has to be sent26



www.manaraa.com

from a processor s to a non-neighbor processor r, and p is the neighbor of s on the pathto r selected by the message routing algorithm used, then the message s sends to p to beforwarded to q is redundant with the message that s sends to p for direct consumption. Forthe example of 8 processors arranged in a 3-dimensional cube, a round of logical messagessent by one processor to the 7 others costs 12 (one-hop) messages. Thus, for � � 1, ourconverted round based agreement protocol tolerant of timing or authentication-detectableByzantine failures sends in the absence of failures at least 12 + 7 � 12 = 216 messages,compared to the 17 messages needed by a di�usion based protocol for any � � 1.8.2 Termination TimeThe termination time for an atomic broadcast depends on the network topology and onthe class of failures to be tolerated. In the absence of information about the networktopology except that the number of processors is bounded above by n, n-1 can be takento be an upper bound on � + d. Clock synchronization algorithms which can providean � close to d� are investigated in [CAS,DHSS]. For simplicity, we assume here an � of(�+ d)�. Thus, for omission failures, the termination time of an atomic broadcast is linearin n: �o = 2(� + d)� is bounded above by 2(n � 1)�. For timing and Byzantine failures,the termination time is proportional to the product of the number of processors and thenumber of processor failures to be tolerated: �t = (� + 2)(� + d)� is bounded aboveby (� + 2)(n � 1)�. As a numerical example, consider the case of 8 processors arrangedin some arbitrary way to form a network. Assume that the link delay bound � is 0.01seconds and that we want to tolerate up to two processor failures. The termination time foromission failures is 0.14 seconds, and for timing failures is 0.28 seconds. (For authentication-detectable Byzantine failures, we might scale these numbers up by a factor of 10, reectingthe increase in � due to authentication processing.) If more information about networktopology is available, then a better expression can be computed for the network di�usiontime d � . Note that the expression �+d corresponds to a worst case path consisting of � hopsbetween faulty processors followed by d hops along a shortest path in the surviving networkof correct processors and links. For example, if the eight processors above are arranged ina 3-dimensional cube and we need tolerate no link failures, the approximate terminationtimes for omission and timing failures are cut to 0.10 and 0.20 seconds respectively. Thisis because � + d is bounded above by 5: if the two faulty processors are adjacent then thediameter of the surviving network is at most 3, and if they are not adjacent the diametercan be 4 but 2 faulty processors cannot be encountered on a path before a correct processoris encountered.Straightforward conversions of rounds based protocols into our system model would requirethat each round include not only the worst case time for sending a message between proces-sors but also an extra delay corresponding to the worst case duration between the end of around on one processor clock and the end of the same round on another processor clock. Forexample the fourth algorithm of [LSP] which terminates in � + d rounds by using di�usion27



www.manaraa.com

requires a termination time of (�+d)(�+ �) clock time units [LSP]. A round based protocolsuch as [DS] which assumes full network connectivity would require that each round lastsfor at least d� + � clock time units. To tolerate � failures, the [DS] protocol needs at least�+ 1 rounds, that is, a conversion to our model would require at least (�+1)(d�+ �) clocktime units. The above termination times are always equal or greater than the terminationtime �(� + �) + d� + � of our third protocol with equality for a fully connected survivingnetwork with d = 1. When only omission failures can occur, our �rst protocol has a bettertermination than any straightforward conversion of the above rounds based protocols, evenin a fully connected network, since ��+d�+ � is smaller than the minimum of (�+d)(�+ �)and (� + 1)(d� + �) whenever � > 0. When � is large compared to �, the di�erence can bedramatic and is one of the justi�cations for studying tolerance to omission failures in ourmodel.We had long conjectured that the termination times provided by our algorithms would turnout to be optimal. However, we were only able to prove the lower bounds of the next section.Recent results have shown that our second and third algorithms do not in fact provideoptimal termination times [SDC]. Our termination times hold for each execution uniformlyand are not simply worst case. Recent work has shown that it is often possible to terminateearlier than the worst case time using acknowledgement in addition to di�usion [PG, GSTC].Thus our algorithms neither achieve the best worst case time nor the best expected oraverage time. However, they still remain competitive from the point of view of simplicity.Work on very closely related problems suggests that the time complexity attributed toalgorithms operating in our model is very sensitive to the de�nition of termination time.Recent results [ADLS, Po] on the real time required for the consensus problem are not readilycomparable with our termination time results even though our models describe exactly thesame phenomena. A better understanding of the relationship between our results and thesereal time results is the subject of current research. While our upper and lower boundscoincide for omission failures, a gap remains between the corresponding upper and lowerbounds for the real time required for consensus.9 Lower Bounds9.1 Runs and Speci�cationsIn this section we present a slightly more formal model for the execution of a distributedsystem. We have postponed the following formalities in the interest of readability for therest of the paper.Formally we view a distributed system as being composed of processors and links. Theprocessors and links of our system could be described by using the language of IO automata[LT]; however, we are only interested in the input/output behavior of these components so28



www.manaraa.com

our model can be somewhat simpli�ed. An execution of the distributed system consistsof a sequence of events for each component of the system. An event is a pair consistingof an action, and a real-time indicating when the action completes. An action is either astate transition speci�c to a component, such as the receipt or the sending of a message,or is a duration action corresponding to the passage of a unit of real-time. The events at acomponent are divided into two sets: input and output. For processors the input events arethe receipt of a message from a link, the receipt of an update and the passage of a unit ofreal time. For links the input events are the receipt of a message from a sending processorand the passage of a unit of real time. The output events for processors are the sending ofa message on a link and the delivery of an update (to a process outside the system). Theoutput events for links are the sending of messages to processors. If an output event froma processor to a link (or vice versa) occurs in an execution then the corresponding inputevent at the link (processor) also occurs in the execution.Executions are deemed to provide semantics for our pseudocode algorithms in the obviousway: correct processors execute the pseudocode and experience output events within thetiming constraints speci�ed by our assumptions. Correct links correlate their input eventsat one end with output events at the other, again within the timing constraints speci�ed.The behavior of faulty components is only governed by the failure class under consideration.For brevity, we will use the term run as interchangeable with the term execution.We assume some starting time called real time 0 for any run. Note that, even if thereare no messages or updates, a run is necessarily in�nite because it includes the eventscorresponding to the passage of units of real time.We use the term local history to denote any �nite pre�x of a sequence of events that takeplace at one component during a run. A speci�cation is a relation between local historiesand output events (the actions speci�ed to occur as a result of these histories) that satis�esthe following property: let s be a speci�cation, let h be a local history in the domain ofs, let u be the latest time associated with an event in h, and let e be the set of real timesassociated by the relation with events in s(h), then e is bounded above by some real time(a deadline by which the output events are supposed to occur) and bounded below by u. Acomponent satis�es its speci�cation s in a run R if the following two properties hold: (1) forevery local history h that is a pre�x of R in the domain of s, there is an output event e 2 Rsuch that e is in s(h); and (2) for every output event e 2 R, there is a local history h suchthat h is a pre�x of R in the domain of s and e is in s(h). Recall that when a componentsatis�es its speci�cation in a run it is called correct in that run.Note that Assumptions 3 and 5 from Section 3 constrain the possible speci�cations forlinks and for sub-component clocks. Our results will hold for any speci�cations that satisfyour assumptions. For example, it would be su�cient to specify that (a) each correct clockmaintain linear envelope synchronization (v. [DHSS], [CAS]) so that �(u � v) � Cp(u) �Cp(v) � �(u� v) + , for all real times u > v, and that (b) each message be delivered by alink within (�� )=� time units of the real time at which it was sent on the link. However,29



www.manaraa.com

such a speci�cation is not necessary.9.2 A time lower bound for crash failuresHere we generalize the last example of the previous Section and provide a lower bound on thetermination time required by any atomic broadcast algorithm in the presence of omissionfailures. We then prove a second lower bound for the termination time of any atomicbroadcast in the presence of authentication-detectable Byzantine failures. Our �rst lowerbound proof is based on a proof in [DS] for a much simpler model; but the conversion fromthe simple model to our system model, especially from completely connected to arbitrarynetworks, was not at all trivial. In fact we leave open a characterization of the networksfor which our algorithms provide optimal termination time, though we conjecture that theyinclude at least the symmetric networks in which, for any pair of nodes p and q, there is anautomorphism mapping p to q.For our �rst result we now �x � and�, the numbers of processors and links that su�eromission failures. We say that P-fpg is an h-path with source s that leads to p if, and onlyif, P is an acyclic path of h �0 hops (i.e. h links) between two processors s and p. An atmost h-path is any k-path with 0 � k � h. For any communication network G, we de�ne anadverse case to be a selection of a set E � G of processors and links, a processor s in G-E,and positive integers h and k, such that (1) the number of links in E is at most �, (2) thesum of h and the number of processors in E is at most �, (3) there exists an h-path froms in G-E, and (4) for any at most h-path P in G-E originating in s and leading to someprocessor p 2 G-E, the network X = G-(E [ P) is connected and contains a processor q6= p at least k hops away from p. A weakly adverse case for G is a selection <E,s,h,k> asabove such that (1) the number of links in E is at most �, (2) the sum of h and the numberof processors in E is at most �, (3) there exists an h-path P in G-E originating in s andleading to some processor p 2 G-E, such that the network X = G-(E [ P) is connected andcontains a processor q 6= p at least k hops away from p. The intuition behind the use of anadverse case <E,s,h,k> in our lower bounds proof is as follows: E contains all processorsand links of G that crash before the initiation of an atomic broadcast by processor s, nolinks in G-E crash during the broadcast, the at most h-path P from s to some processor pcontains all processors that su�er failures during the broadcast, p is the \closest" correctprocessor to s on the path, and q is used as a witness for equivalent protocol runs.We say that a network G requires x steps if there is an adverse case <E,s,h,k> for G withh+k=x. We say that network G allows x steps if there is a weakly adverse case <E,s,h,k>for G with h+k=x. If xmax is the largest number of steps allowed by a network, then wecan set the termination time � of an omission failure tolerant protocol speci�cally tailoredfor that network to xmax� + � and prove its correctness in a manner analogous to the waywe proved the correctness of our �rst protocol, which uses the general upper bound �+dfor xmax. 30



www.manaraa.com

Theorem 4: If the communication network G requires x steps, then any atomic broadcastprotocol tolerant of up to � processor and � link omission failures has a termination timeof at least x� + �.Proof: Suppose that, for given � and �, G requires x steps, that is, G has an adversecase <E,s,h,x-h>, but there exists some protocol A that achieves atomic broadcast in thepresence of up to � processor and � link omission failures for some termination time D <x � + �. Let y and z be times such that 0 < y < �, 0 < z < �, and D < xy + z. Withoutloss of generality, we will assume that A is a deterministic protocol. If A were randomizedwe would restrict our attention to constructing a universe of runs (or executions) for A inwhich all random choices are made in the same way at all processors (e.g. all coins tossedby all processors are \heads").We assume, without loss of generality, that the real times at which messages may be sentform a discrete countable subset of the set of all real times so that we can use induction onthis set. Suppose otherwise that the set of real times at which A requires messages in allruns is dense. We can perturb A slightly to wait for the next instant in our discrete set andspeed up the delivery so that the message is received at the same time. This transformationwill produce runs that are indistinguishable by message receipt history, provided no runsare considered in which messages are delivered faster than the time between closest pointsin the discrete set. By Assumption 6, the number of messages A may require at any instantin the discrete set is �nite.Let S be the set of atomic broadcast runs (or executions) for protocol A, with initiator sstarting the broadcast of some update � 2 Update, j Update j � 2, at real time 0, thatsatisfy the following properties: (1) all processor clocks run at the rate of real time, (2) forany t �0, Cs(t) = t, (3) for any r 6= s, and for any t � 0: Cr(t) = t+z, (4) all messagesexchanged between processors take exactly y (real or clock) time units for transmission andprocessing, (5) each component of E fails before real time 0 and the only faulty links are inE, (6) all failures are crash failures (recall that after a crash failure a component ceases tosend or relay any messages prescribed by A) (7) there is an at most h path � originatingin s such that if H is the set of processors in G-E that fail, then (7.1) the processors in Hare among the nodes of �, (7.2) any failure of a node f 2 H situated k �0 hops from s on� occurs at a real time t � ky, (7.3) if processor f situated k hops from s on � crashes attime t (possibly after sending some messages required by A at that time), then no processorsituated fewer than k hops from s on � sends any messages after t, and (7.4) if H is notempty, then the last processor on � is in H.Note that since <E,s,h,x-h> is an adverse case, conditions (1) through (7) imply that thereare no more than � processor failures and � link failures during the broadcast of � and thatthese failures do not disconnect the surviving network (see part 4 of the de�nition of adversecase). Note also that the empty path is assumed to be an at most h-path originating in s.For each run Q, processor q, and real time t, let Msgs(Q,q,t) denote the sequence of pairs31



www.manaraa.com

< mi; ri >, i 2 f1,...,kg, such that protocol A requires q to send message mi. to processorri at t in Q, the order of the sequence being the order in which A requires the messages tobe sent. Given a run Q 2 S, we denote by Q(� t) the partial run through time t in whichall processors and links behave as in Q. We also denote by Q(<t) the corresponding partialrun up to time t. Since we have assumed A is deterministic, we assume that for any runsQ and Q' with Q(<t) = Q'(<t), we have Msgs(Q,q,t) = Msgs(Q',q,t).For any partial run Q(� t) that satis�es conditions (1) through (7), we de�ne the conser-vative extension of Q(�t) to be the unique run in S in which each component (processor orlink) continues to behave correctly according to A unless it has already crashed by time t.If some processor q crashes in Q(�t) by time t that is, for some time t'�t q omits to sendat least one message in Msgs(Q,q,t'), then q remains crashed in the conservative extensionof Q(�t) to the end of time. We say that two runs are output equivalent if any updatesdelivered by correct processors are the same in both runs. We de�ne the relation witnessequivalence to be the transitive closure in S of the relation that holds between two runswhen there is a processor q correct in both that cannot distinguish between them on thebasis of its message history through time D on q's clock. Under the assumption that A iscorrect, if two runs are witness equivalent, then they are output equivalent.To prove Theorem 4, it is su�cient to show the output equivalence of two runs Sc and Sfin S such that in Sc processor s initiates the atomic broadcast correctly at time 0 and eachprocessor in G-E is correct to time D on its clock, and in Sf processor s crashes withoutinitiating atomic broadcast and does not send any messages at or after time 0 while eachother processor is correct to time D on its clock. (Note that the real time of a crash ofprocessor q in run Q is de�ned as the �rst time t such that Msgs(Q,q,t) is nonempty and qdoes not send some message from Msgs(Q,q,t) in Q. Since we assume processor s must sendits update if it is correct, there is such a time that processor s crashes in Sf ; but the timeof crash may be after 0.) The output equivalence of these two runs of A contradicts thehypothetical correctness of protocol A, since if A were correct, in Sc all correct processorswould deliver the update � at time D on their clocks and in Sf . no processor would deliverthe update at time D on its clock.In order to prove that the runs Sc and Sf are witness (and hence output) equivalent, wede�ne by mutual recursion a crash correction operator, �c, and a crash insertion operator,�f , each of typeS� Path � Processor � Time ! S.When applied to a quadruple (Q,�,q,t) in its domain, each of these operators yields arun R that is witness equivalent to Q. Moreover, the operators are de�ned in such a waythat there exist paths � and � and a real time t � 0 such that Sc = �c(Sf ; �; s; t) andSf = �f (Sc; �; s; 0). In particular, � is any path consisting of s and a link from s to anotherprocessor not in E, t is the �rst time � 0 such that Msgs(Sf ,s,t) is not empty (so t is thetime s crashes in Sf ), and � is the empty path (viewed as leading to s).32



www.manaraa.com

De�nition of the crash correction operator: The domain of �c is the set of all quadruples <Q,�,q,t>, where Q 2 S, � is an at most h-path from s that satis�es condition (7) in Q, qis the last processor on �, and t is a real time � 0 such that q crashes at real time t in Q.Let < mi; ri > i 2 f1,...,kg be the subsequence of Msgs(Q,q,t) that q did not send in Q att. The run R = �c(Q,�,q,t) is de�ned as follows. Let Q0 = Q.� Case a: t �(h-1)y.{ Step 1: For j = 1 to k, add mj to Qj�1(�t) and let Qj be the conservative extensionof the resulting partial run.� Case b: t < (h-1)y.{ For j=1 to k,� Case c: rj is on � or in E or the link from q to rj is in E.� Step 2: Add mj to Qj�1 to obtain Qj .� Case d: rj is neither on � nor in E and the link from q to rj is not in E.� Step 3: Let � be the result of changing � to lead to rj (with no otherchanges) and let Qj�1:1 = �f (Qj�1,�,rj ,t+y).� Step 4: Add mj to Qj�1:1 to obtain Qj�1:2.� Step 5: If rj does not crash in Qj�1:2, then let Qj = Qj�1:2; otherwise, let t'be the time that rj crashes in Qj�1:2, let �' be an extension by rj and onelink of � to produce an at most h-path that satis�es (7) in Qj�1:2, and letQj = �c(Qj�1:2,�',rj,t').� Step 6: If q crashes in Qk, then let t' be the time q crashes in Qk and let R =�c(Qk ,�,q,t'); otherwise, let R = Qk .De�nition of the crash insertion operator: The domain of �i is the set of all quadruples<Q,�,q,t> such that � is an at most (h-1)-path that leads to processor q, � satis�escondition (7) in run Q 2 S and, if t' is the smallest real time � t such that Msgs(Q,q,t')is nonempty, then the conservative extension of the result of removing Msgs(Q,q,t') fromQ(�t') is in S with an extension of � satisfying condition (7). The run R = �f (Q,�,q,t) isde�ned as follows. If there is no t' �t such that Msgs(Q,q,t') is nonempty, then R = Q;otherwise, let t' be the smallest such time and let < mi; ri > i 2 f1,...,kg be the sequenceMsgs(Q,q,t').� Case a: t' �(h-1)y.{ Step 1: Let Q0 = Q. For j = k to 1, let Q(k-j+1) be the conservative extension ofthe result of removing mj from Qk�j(�t'). Let R = Qk .� Case b: t'<(h-1)y.{ Step 2: If t' is the latest time such that Msgs(Q,q,t') is nonempty, then let Q0 =Q; otherwise, let t" be the next time after t' with Msgs(Q,q,t") nonempty and letQ0 = �f(Q,�,q,t"). 33



www.manaraa.com

� For j = k to 1,� Case c: rj is on � or in E or the link from q to rj is in E.� Step 3:Let Qk�j+1 be the result of removing mj from Qk�j .� Case d: rj is neither on � nor in E and the link from q to rj is not in E.� Step 4:Let � be the extension of � by q and one link from q to rj and letQk�j:1 = �f (Qk�j ,�,rj,t+y).� Step 5:Remove mj from Qk�j:1 to obtain Qk�j:2.� Step 6:If rj does not crash in Qk�j:2, then let Qk�j+1 = Qk�j:2; otherwise,let t' be the real time that rj crashes in Qk�j:2, let �' be an extension of �by rj and one link that leads to another processor not in the extension, andlet Qk�j+1 = �c(Qk�j:2,�',rj,t').{ Finally, let R = Qk .For runs Q and R, processor p, and time t, we de�ne the relation Q �p;t R to hold exactlywhen Q(<t) = R(<t) and, except for messages sent by p at time t, Q(�t) = R(�t). Thisshorthand will be useful in describing the results of applying our operators.Lemma 13 : The two operators are well de�ned. If <Q,�,q,t> is in the domain of �c andR = �c(Q,�,q,t), then Q and R are witness equivalent, Q �q;t R and some pre�x of �without q satis�es condition (7) in R. If <Q,�,q,t> is in the domain of �f and R =�f (Q,�,q,t), then Q and R are witness equivalent, Q �q;t R, q sends no messages in Rat or after time t, and, either q does not crash in R and � satis�es condition (7) in R,or an extension of � by q and a link from q satis�es (7) in R.Proof: We prove Lemma 13 by induction on the number of links in � between s and q oron the time t. Note that no step in the de�nition of either operator changes conditions (1)through (5). Thus we need check only conditions (6) and (7) to make sure that the runproduced by each step is a member of SAs a base case for the induction, assume that t � (h-1)y. Note that by condition (7), if thenumber of links between s and q on � is h-1, then t must be � (h-1)y.Consider the crash correction operator applied to <Q,�,q,t> in its domain. Here we havecase a and R is determined by step 1 and step 6. Also � satis�es (7) in Q0=Q 2 S andMsgs(Q,q,t) = Msgs(Q0,q,t). Assume � satis�es (7) in Qj�1 2 S and Q �q;t Qj�1 sothat Msgs(Q,q,t) = Msgs(Qj�1,q,t). Adding mj to Qj�1(�t) does not change the fact thatthe partial run satis�es conditions (1) through (7), so taking the conservative extensionproduces a run Qj in S. Note that Q �q;t Qj . Hence, Msgs(Q,q,t) = Msgs(Qj ,q,t); so qcrashes in Qj if, and only if, j 6= k. Since < E,s,h,x-h > is an adverse case, there must bea processor p correct in both Qj�1 and Qj that is at least x-h hops away from rj . This pcannot distinguish between Qj�1 and Qj until real time xy, which is after clock time D forp. Thus Qj�1 and Qj are witness equivalent. Moreover, if q crashes in Qj , then � satis�es34



www.manaraa.com

(7) in Qj ; otherwise j=k and the pre�x of � that leads to q satis�es (7) in Qk . By inductionon j, Q is witness equivalent to Qk , Q �q;t Qk , and either � satis�es (7) in Qk or q doesnot crash in Qk and the pre�x of � that leads to q satis�es (7) in Qk. Note that Qk is theconservative extension of a partial run in which q does not fail. Thus q does not fail in Qkand R = Qk according to step 6.Second, consider the crash insertion operator applied to <Q,�,q,t> in its domain. If there isno time t'�t with Msgs(Q,q,t') nonempty, then R = Q, processor q sends no messages in Rat or after t, and � satis�es (7) in R. Assume, without loss of generality, that R 6= Q. Thusthere is a smallest t'�t with Msgs(Q,q,t') nonempty. Again we have case a, since t' � t �(h-1)y, so R is determined by step 1 alone and Q0 = Q. Thus � satis�es (7) in Q0, Q �q;t0Q0, and Msgs(Q,q,t') = Msgs(Q0,q,t'). Let � be any extension of � by q and a link fromq to another processor correct in Q. Since <Q,�,q,t> is in the domain of �f , � satis�es (7)in Q1, which is the conservative extension of the result of removing mk from Q0(�t'). AlsoQ �q;t0 Q1, so Msgs(Q,q,t') = Msgs(Q1,q,t'). Since <E,s,h,x-h> is an adverse case, Q=Q0is witness equivalent to Q1 by the argument for the crash correction operator. Assume �satis�es (7) in Qk�j , Q �q;t0 Qk�j , and Q is witness equivalent to Qk�j . Since Qk�j+1 isthe conservative extension of the result of removing mj from Qk�j(�t') and Msgs(Q,q,t')= Msgs(Qk�j ,q,t'), � satis�es (7) in Qk�j+1 and Q �q;t0 Qk�j+1. Again, since <E,s,h,x-h>is an adverse case, Q is witness equivalent to Qk�j+1. Thus by induction on j (from k to1), � satis�es (7) in Qk = R, Q �q;t0 R, and Q is witness equivalent to R. Since R is theconservative extension of a partial run in which q crashes at t', q crashes at t' in R.Now assume that <Q,�,q,t> is in the domain of �c and we have as induction hypothesis thatthe lemma holds for both operators when the number of links between s and the processorargument on the path argument is greater than the number of links between s and q on �or when the time argument is greater than t. We assume that the number of links betweens and q on � is less than h-1 and that t < (h-1)y. Thus we have case b and R is determinedby steps 2 through 6. Since Q0 = Q, � satis�es condition (7) in Q0, Q �q;t Q0, and Q iswitness equivalent to Q0. Assume that � satis�es condition (7) in Qj�1, Q �q;t Qj�1, andQ is witness equivalent to Qj�1. If case c holds, then either no message from q reaches rj orrj sends no messages after t (by condition (7)) in Qj�1. According to step 2, Qj is the resultof adding mj to Qj�1. Thus Q �q;t Qj so Msgs(Q,q,t)=Msgs(Qj,q,t). If j<k then q crashesat t in Qj and � satis�es condition (7) in Qj . If j=k then either q crashes at a later time inQj , in which case � satis�es condition (7) in Qj , or q does not crash in Qj , in which case thepre�x of � that leads to q satis�es (7) in Qj . Since either no message reaches rj from q or rjsends no messages after t, no processor correct in both (excluding rj) can distinguish Qj�1from Qj . Since <E,s,h,x-h> is an adverse case, there is a processor other than rj correct inboth. Thus they are witness equivalent. Assume case d holds. Qj is determined by steps 3through 5. Since q is the last node on � and there is a message from q to rj in Msgs(Q,q,t),� is well de�ned. Since t<(h-1)y, there are at most h-1 processors on � and � satis�es (7)in Q and hence in Qj�1. Let �' be the extension of � by the addition of rj and a link fromrj to some processor that does not crash in Qj�1. If t' is the �rst time � t+y such that35



www.manaraa.com

Msgs(Qj�1,rj,t') is nonempty, then �' satis�es (7) in the conservative extension of the resultof removing Msgs(Qj�1,rj ,t') from Qj�1(�t'). Thus <Qj�1,�,rj,t+y> is in the domain of�f . By the induction hypothesis, Qj�1 is witness equivalent to Qj�1:1, Qj�1 �rj ;t Qj�1:1,either � or �' satis�es condition (7) in Qj�1:1, and rj sends no messages at or after t+y inQj�1:1. Thus no processor correct in both (excluding rj) can distinguish between Qj�1:1and Qj�1:2, which is obtained by adding mj to Qj�1:1 according to step 4. Also we haveQj�1:1 �q;t Qj�1:2, and either � or �' satis�es (7) in Qj�1:2, since q sends no messages aftert in Qj�1:2 even if j=k and q does not crash at t. Since <E,s,h,x-h> is an adverse case,there is a processor other than rj that is correct in both; so Qj�1:1 is witness equivalentto Qj�1:2. If rj crashes in Qj�1:2, then <Qj�1:2,�',rj,t'> is in the domain of �c and �' islonger than �; so Qj , which is �c(Qj�1:2,�',rj ,t') according to step 5, is witness equivalent toQj�1:2 with Qj �rj ;t0 Qj�1:2 and a pre�x of � satis�es (7) in Qj by the induction hypothesis.Thus, by induction on j (from 1 to k), we have Q witness equivalent to Qk , Q �q;t Qk, anda pre�x of � satis�es (7) in Qk . If q does not crash in Qk, then R = Qk according to step6, and a pre�x of � without f, which is a pre�x of � without f, satis�es (7) in R; otherwise,<Qk ,�,q,t'> is in the domain of �c, where t' is the time > t at which q crashes in Qk . Inthe latter case, by the induction hypothesis, Q �q;t R, Q and R are witness equivalent, anda pre�x of � without q satis�es (7) in R, since R = �c(Qk,�,q,t').Now assume that <Q,�,q,t> is in the domain of �f and we have the previous inductionhypothesis. We assume that the number of links between s and q on � is less than h-1and that t < (h-1)y. Thus at most h-2 processors crash in Q. (This is important becausewe will want to crash as many as an additional two processors during the execution of�f .) If there is no time t'�t such that Msgs(Q,q,t') is nonempty, then R = Q and we aredone. If there is such a t' but only greater than t, then again we are done by the inductionhypothesis, because R = �f(Q,�,q,t) = �f(Q,�,q,t'). Thus we assume that there is sucha t' and that t' = t. Hence we have case b and R is determined by steps 2 through 6.According to step 2, if t is the latest time such that Msgs(Q,q,t) is nonempty, then Q0 = Q;otherwise, there is a later such time t." Since <Q,�,q,t> is in the domain of �f , <Q,�,q,t">is also. Thus, by the induction hypothesis, Q0 = �f(Q,�,q,t") is witness equivalent to Q,Q �q;t" Q0, f sends no messages at or after t" so q crashes in Q0 at t", and an extensionof � by q and a link from q satis�es (7) in Q0. Assume Q is witness equivalent to Qk�j ,Q �q;t Qk�j , f sends no messages after t in Qk�j , and � satis�es (7) in Qk�j where � isany extension of � by q and a link from q leading to a processor outside the extension. Ifcase c holds, then Qk�j+1 is obtained according to step 3 by removing mj from Qk�j andeither no message reaches rj from q or rj sends no messages after t in both Qk�j and inQk�j+1. Thus no processor (excluding rj) correct in both could distinguish between Qk�jand Qk�j+1 . Since <E,s,h,x-h> is an adverse case, there is a processor other than rj thatis correct in both runs; so Qk�j is witness equivalent to Qk�j+1. Also, Qk�j �q;t Qk�j+1,Path � de�ned above satis�es (7) for Qk�j+1, and q sends no messages after t in Qk�j+1. Ifcase d holds, then Qk�j+1 is determined by steps 4 through 6. In this case � leads to rj and<Qk�j ,�,rj,t+y> is in the domain of �f because � has at most h-1 links. According to step4, Qk�j:1 = �f (Qk�j ,�,rj,t+y). By the induction hypothesis, Qk�j is witness equivalent to36



www.manaraa.com

Qk�j:1, Qk�j �rj ;t+y Qk�j:1, rj sends no messages at or after t+y in Qk�j:1, and either � oran extension of � by rj and a link from rj to a processor not on the extension satis�es (7)for Qk�j:1, depending on whether rj actually crashes in Qk�j:1. Since Qk�j �rj;t+y Qk�j:1, fsends no messages after t in Qk�j:1. According to step 5, Qk�j:2 is obtained from Qk�j:1 byremoving mj Thus no processor (excluding rj) correct in both runs can distinguish betweenthem. Since <E,s,h,x-h> is an adverse case, there is a processor other than rj correctin both runs. Thus Qk�j:1 and Qk�j:2 are witness equivalent, Qk�j:1 �q;t Qk�j:2, f sendsno messages after t in Qk�j:2, and either � or the extension of � de�ned above satis�es(7) for Qk�j:2. If rj does not crash in Qk�j:2, then Qk�j+1 = Qk�j according to step 6.Assume rj crashes in Qk�j:2 and let �' and t' be de�ned according to step 6. Note thatt'�t+y. Then �' satis�es (7) in Qk�j:2 and <Qk�j:2,�',rj,t'> is in the domain of �c. By theinduction hypothesis, Qk�j:2 is witness equivalent to Qk�j+1 = �c(Q"(k-j),�',rj,t'), Q"(k-j)�rj ;t0 Qk�j+1, and a pre�x of � satis�es (7) in Q(k-j+1). Thus Q is witness equivalent toQ(k-j+1), Q �q;t Q(k-j+1), and � satis�es (7) in Q(k-j+1) since q crashes at t in Q(k-j+1).By induction on j (from k to 1), Q is witness equivalent to Qk =R, Q �q;t R, the appropriateextension of � satis�es (7) in R, and q sends no messages at or after t in R.This completes the proof of the lemma. 2Lemma 13 su�ces to prove Theorem 4 as outlined above.2Note that because of condition (6) we only used crash failures in our proof. Thus Theorem4 holds for crash failures as well as for omission failures. Moreover, we were careful not todisturb the order in which messages were required to be sent by A; so Theorem 4 holds fororderly crash failures (in which the failing processor cannot send messages out of order).It is easy to show that a completely connected network of n nodes requires �+1 steps(to tolerate � <n-1 processor omission failures and � =0 link failures), so Theorem 4 isconsistent with the result in [DS].9.3 A time lower bound for authentication-detectable Byzantine failuresWe now move from omission failures to authentication-detectable Byzantine failures andshow that our protocols are best possible for the case of an n processor Hamiltonian networkthat must tolerate n-2 processor authentication-detectable Byzantine failures. A Hamilto-nian network is one that has an acyclic path containing all the network nodes. A fullyconnected network and a 3-dimensional cube are examples of Hamiltonian networks.Theorem 5 Any atomic broadcast protocol for a Hamiltonian network with n processorsthat tolerates n-2 authentication-detectable Byzantine processor failures cannot have a ter-mination time smaller than (n-1)(� + epsilon).37



www.manaraa.com

Proof: Let G be a Hamiltonian network with processors numbered 0 to n-1 on some acyclicpath. Let D be the hypothesized termination time for such an atomic broadcast protocol Aand suppose that D<(n-1)(�+ epsilon). As in the proof of Theorem 4, let 0 < y < �, 0 < z< epsilon, and D<(n-1)(y+z). Let R. be the set of runs of A in which processor 0 initiatesthe atomic broadcast of update � at time 0 which satisfy the following properties: (1) allprocessor clocks run at the rate of real time, (2) for any j, 0 � j � n-1: processor j behavesas if Cj(0) = jz (when z is very close to �, at most two processors can be correct since weassume that the clocks of correct processors run within � of each other); (3) all messagessent that are received take exactly y time units, (4) in each run only two processors i-1and i are correct, 1 � j � n-1 (we denote by S(i) the run in which processors i-1 and i arecorrect), (5) each processor j follows A according to the clock Cj, except that if j is notcorrect in S(i), then j omits to receive or send any messages from or to processors otherthan j-1 and j+1. Again we assume without loss of generality that any random choices aremade in the same way in each run at all processors. By construction, each adjacent pair ofruns S(i), S(i+1) 1 � i � n-2 has identical message histories at the correct processor i theyshare. Thus, the runs S(i) are witness (and hence output) equivalent. At real time 0 whenthe atomic broadcast is initiated by processor 0, the clock of processor (n-1) reads (n-1)z.Since the broadcast is timestamped 0, run S(n-1) cannot have processor (n-1) deliver theupdate. Indeed, since the faulty processors con�ne any information exchange to be betweenneighbors j,j+1 only, it takes (n-1)y time units for any information from 0 to reach n-1,and when such information reaches n-1, the termination time D is already past on n-1'sclock. Thus in run S(n-1), in which processors n-2 and n-1 are the only ones correct, neitherprocessor delivers �. An induction on i (using witness equivalence) shows that the sameproperty holds of each run S(i): neither correct processor delivers �. Thus in run S(1)neither processor 0 nor processor 1 delivers �, contradicting the termination property of thehypothesized protocol A. 2Therefore, in a Hamiltonian n-node network where the objective is to tolerate up to n-2authentication-detectable Byzantine failures our third protocol achieves the best possibletermination time. For example, according to Theorem 5, in a fully connected network of4 processors the best possible termination time for handling 2 authentication-detectableByzantine processor failures is 3(� + �) which is identical to the termination time of oursecond and third protocols, since � =2 and d=1.10 ConclusionThis paper has speci�ed the atomic broadcast problem, has proposed a classi�cation of thefailures observable in distributed systems, has investigated three protocols for atomic broad-cast in systems with bounded transmission delays and no partition failures, has proven theircorrectness and discussed their performance, and has also proved two lower bound theoremswhich show that, in many cases, these protocols provide the best possible termination times.38



www.manaraa.com

Atomic broadcast simpli�es the design of distributed fault-tolerant programs by enablingcorrect processes to access global state information in synchronous replicated storage. Thisnotion reduces the problem of distributed programming to that of \shared storage" pro-gramming without having a single point of system failure. In the Highly Available Systemsprototype, we used synchronous replicated storage to store crucial system con�gurationinformation that must remain available despite (possibly multiple) processor failures.The three protocols derived share the same speci�cation, have the same di�usion-basedstructure, but di�er in the classes of failures tolerated, ranging from omission failures, toauthentication-detectable Byzantine failures. Besides being of pedagogical value for thosenot familiar with the intricacies of achieving Byzantine agreement, our derivation sheds newlight on the continuum that exists between rather simple message di�usion protocols andmore complex Byzantine agreement protocols. Clearly, the complexity increases as morefailures are tolerated, but the complexity of the �nal protocol that handles authentication-detectable Byzantine failures is not orders of magnitude greater than that of the initialprotocol. A variant of this protocol (which uses error correcting codes to authenticatemessages) has been implemented and runs on a prototype system designed by the HighlyAvailable Systems project at the IBM Almaden Research Center [GS]. The experienceaccumulated during the implementation and test of this prototype showed us that thefailures most likely to be observed in distributed systems based on general purpose operatingsystems such as VM or Unix are performance (or late timing) failures caused by randomvariations in system load. Since we were aware of the di�culty of debugging distributedprotocols (especially when time-dependent), we proved the correctness of ours by using acommon di�usion induction principle for all protocols. We believe this proof technique isapplicable to many other distributed protocols based on information di�usion.Given our implementation objective, we have based our protocols on a more realistic systemmodel (i.e. arbitrary network topology, approximately synchronized clocks, unreliable com-munication links) than previous algorithms for achieving agreement based on the roundsmodel. Abandoning the rounds model has led to better performance than we obtainedby a straightforward conversion of the rounds based protocol in [DS]. Even better perfor-mance could be achieved by adopting a clock synchronization approach developed later [Cri]which enables the achievement of synchronization precisions superior to those achievable byalgorithms such as those discussed in [CAS], [DHSS], and [Sc].At the time when our protocols were invented (1983), we were unaware of other protocolsfor atomic broadcast designed for system models more realistic than those assumed inthe Byzantine agreement literature [F], [LSP], [SD]. Since then, several other protocolsfor atomic broadcast in system models similar to ours have been proposed (e.g. [BJ],[BSD], [Ca], [CM], [D], [GSTC], [PG], [SDC]). All protocols proposed so far can be dividedinto two classes: time oriented protocols providing bounded termination times even whenfailures occur during broadcast, and acknowledgement-based protocols that do not providebounded termination times if failures occur during a broadcast. Examples of protocols in39



www.manaraa.com

the �rst class (other than those given in this paper) are [BSD], [GSTC], [PG], and [SDC].Examples of acknowledgement-based protocols are [BJ], [Ca], [CM], and [D]. While theacknowledgement-based protocols have the potential of tolerating performance failures thatcan cause network partitioning, di�usion protocols cannot tolerate partition failures. Wehave investigated methods for detecting and reconciling inconsistencies caused by partitionsin systems using di�usion based atomic broadcast (e.g. [SSCA]), but such \optimistic"approaches cannot be used in applications in which there are no natural compensationactions for the actions taken by some processors while their state was inconsistent withthe state of other processors. The existence of these two classes of protocols pose a seriousdilemma to distributed system designers: either avoid network partitioning by using massivenetwork redundancy and real-time operating systems to guarantee bounded reaction timeto events in the presence of failures, or accept partitioning as an unavoidable evil (forexample because the operating systems to be used are not hard real-time) and abandon therequirement that a system should provide bounded reaction times to events when failuresoccur.11 AcknowledgementsWe would like to thank Joe Halpern, Fred Schneider, Mario Schkolnik, Dale Skeen, IrvTraiger, and the referees for a number of useful comments and criticisms. We would alsolike to thank Nick Littlestone for suggesting the disjunctive form of proposition � in theproof of Theorem 3. This made it possible to use essentially the same proof technique(di�usion induction) for proving the correctness of all our protocols.12 References[ADLS] H. Attiya, C. Dwork, N. Lynch, and L. Stockmeyer, \Bounds on the time to reachagreement in the presence of timing uncertainty," Proceedings of ACM Symposium onTheory of Computing, pp. 358-369, 1991.[BSD] O. Babaoglu, P. Stephenson, R. Drumond: \Reliable Broadcasts and CommunicationModels: Tradeo�s and Lower Bounds," Distributed Computing, No. 2, pp. 177-189, 1988.[BJ] K. Birman, T. Joseph: \Reliable Communication in the Presence of Failures," ACMTransactions on Computer Systems, Vol. 5, No. 1, February 1987, pp. 47-76, 1984.[C] F. Cristian, \Correct and Robust Programs," IEEE Transactions on Software Engineer-ing, Vol. SE-10, no. 2, pp. 163-174, 1984.[Ca] R. Carr: \The Tandem Global Update Protocol," Tandem Systems Review, pp. 74-85,40



www.manaraa.com

June 1985.[CAS] F. Cristian, H. Aghili, and R. Strong, \Clock Synchronization in the Presence ofOmission and Performance Faults, and Processor Joins," 16th International Conference onFault-Tolerant Computing, Vienna, Austria, 1986.[Cr] F. Cristian, \Agreeing on Who is Present and Who is Absent in a SynchronousDistributed System," 18th International Conference on Fault-Tolerant Computing, Tokyo,Japan, 1988.[Cri] F. Cristian, \Probabilistic Clock Synchronization," Distributed Computing, Vol. 3, pp.146-158, 1989.[CM] J.M. Chang, and N.F. Maxemchuk, \Reliable Broadcast Protocols," ACM Transac-tions on Computer Systems, Vol. 2, No. 3, pp. 251-273, 1984.[D] \The Delta-4: Overal System Speci�cation," D. Powell, editor, Delta-4 Project Consor-tium, Bull-SA, BP 208, 38432 Echirolles, France, January 1989.[DS] D. Dolev, and R. Strong, \Authenticated Algorithms for Byzantine Agreement," SIAMJournal of Computing, Vol. 12, No. 4, pp. 656-666, 1983.[DHSS] D. Dolev, J. Halpern, B. Simons, and R. Strong, \Fault-Tolerant Clock Synchro-nization," Proceedings of the 3rd Annual ACM Symposium on Principles of DistributedComputing, 1984.[F] M. Fischer, \The Consensus Problem in Unreliable Distributed Systems," Proceedingsof the International Conference on Foundations of Computing Theory, Sweden, 1983.[GSTC] A. Gopal, R. Strong, S. Toueg, and F. Cristian, \Early-delivery atomic broadcast,"Proc. 9th ACM Symp. on Principles of Distributed Computing, pp. 297-309, Quebec City,1990.[GS] A. Griefer, and H. R. Strong, \DCF:Distributed Communication with Fault-tolerance,"Proceedings of the 7th Annual ACM Symposium on Principles of Distributed Computing,1988.[L] L. Lamport, \Using Time instead of Time-outs in Fault-Tolerant Systems," ACM Trans-actions on Programming Languages and Systems, Vol. 6, No. 2, pp. 256-280, 1984.[LSP] L. Lamport, R. Shostak, and M. Pease, \The Byzantine Generals Problem," ACMTransactions on Programming Languages and Systems, Vol. 4, No. 3, pp. 382-401, July1982.[PG] F. Pittelli, H. Garcia-Molina, \Recovery in a Triple Modular Redundant DatabaseSystem," Technical Report CS-076-87, Princeton University, January, 1987.41



www.manaraa.com

[PW] W. Peterson, and E. Weldon, \Error Correction Codes," (2nd Edition), MIT Press,Massachusetts, 1972.[Po] S. Ponzio, \Consensus in the Presence of Timing Uncertainty: Omission and Byzan-tine Failures (Extended abstract)," Proceedings of the 10th Annual ACM Symposium onPrinciples of Distributed Computing, 1991.[RSA] R. Rivest, A. Shamir, and L. Adelman, \A Method for Obtaining Digital Signaturesand Public-Key Cryptosystems," CACM, 21:2, pp. 120-126, 1978.[Se] A. Segall, \Distributed Network Protocols," IEEE Trans. on Information Theory,IT-29:1, pp. 23-35, 1983.[Sc] F. Schneider: \Understanding Protocols for Byzantine Clock Synchronization," Tech-nical report 87-859, Cornell University, August 1987.[SD] R. Strong, and D. Dolev, \Byzantine Agreement," Proceedings of COMPCON, Spring1983.[SDC] R. Strong, D. Dolev, and F. Cristian, \New Latency Bounds for Atomic Broadcast,"Proceedings of the 11th IEEE Real Time Systems Symposium, Orlando, 1990.[SSCA] R. Strong, D. Skeen, F. Cristian, H. Aghili, \Handshake Protocols," 7th Interna-tional Conference on Distributed Computing, pp. 521-528, September 1987.

42


